Scientists reveal fate of Earth's oceans

May 10, 2006

Scientists at The University of Manchester have uncovered the first evidence of seawater deep inside the Earth shedding new light on the fate of the planet's oceans, according to research published in Nature this week (May 11, 2006).

For years geologists have debated whether seawater is subducted (absorbed) into the deep Earth or whether there is a 'subduction barrier' blocking its absorption.

For the first time scientists at The University of Manchester have positively identified seawater in volcanic gas samples originating from the Earth's mantle - the region just below the crust and extending all the way down to the core – supporting the theory that seawater is subducted deep into the Earth and enabling them to test this theory further.

Professor Chris Ballentine and Dr Greg Holland of the University's School of Earth and Atmospheric and Environmental Sciences have also revealed that up to 10% of the Earth's oceans have been absorbed deep into the Earth since its formation.

Professor Ballentine said: "We can show that up to 10% of the Earth's oceans have been absorbed into the planet since formation. This accounts for about half of the water in the deep earth, the remainder of which was trapped when the Earth first formed. This work, for the first time, quantifies the 'geological water cycle'."

Trace gases were used to identify seawater in volcanic gas samples. This was done by counting the relative number of atoms of different noble gases (Argon, Krypton and Xenon) in the samples which revealed an atomic 'fingerprint' matching that of seawater.

The study, funded by the Natural Environment Research Council, is also the first to establish the precise composition of the noble gases present in the Earth's mantle. In addition to identifying seawater the noble gases have provided a cornerstone for understanding the very origin of gases and water in our planet.

Dr Holland said: "As we now know how much seawater and associated gases were added to the deep Earth, we can identify what was down there to start with much more precisely. This is absolutely critical for understanding how our planet formed and has changed over time"

Professor Ballentine added: "Our results also explain why ocean volcanoes, like Hawaii and Iceland, which come from the where the mantle meets the core, have a higher water content than ocean volcanoes that originate from shallower regions of the mantle. Previously, geologists have thought that this is because this region of the planet preferentially preserved water and gasses trapped during earth formation and it is only now 'leaking out'. We know however that if seawater subduction is occurring, it will be carried more efficiently into the deepest parts of the earth, and that contrary to these old ideas, the water in the lavas from Hawaii and Iceland are in fact dominated by old seawater that has travelled from the surface, to the center of the earth and back again."

Source: University of Manchester

Explore further: One-two punch of rising seas, bigger storms may greatly magnify US East coast floods

Related Stories

Drilling boom brings rising number of harmful waste spills

September 8, 2015

Carl Johnson and son Justin are third- and fourth-generation ranchers who for decades have battled oilfield companies that left a patchwork of barren earth where the men graze cattle in the high plains of New Mexico. Blunt ...

Intensity of desert storms may affect ocean phytoplankton

August 27, 2015

Each spring, powerful dust storms in the deserts of Mongolia and northern China send thick clouds of particles into the atmosphere. Eastward winds sweep these particles as far as the Pacific, where dust ultimately settles ...

Recommended for you

Asteroid impact, volcanism were one-two punch for dinosaurs

October 1, 2015

Berkeley geologists have uncovered compelling evidence that an asteroid impact on Earth 66 million years ago accelerated the eruptions of volcanoes in India for hundreds of thousands of years, and that together these planet-wide ...

History shows more big wildfires likely as climate warms

October 5, 2015

The history of wildfires over the past 2,000 years in a northern Colorado mountain range indicates that large fires will continue to increase as a result of a warming climate, according to new study led by a University of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.