Tiny 'cages' could trap carbon dioxide and help stop climate change

March 17, 2006

A natural physical process has been identified that could play a key role in secure sub-seabed storage of carbon dioxide produced by fossil-fuelled power stations.

A team of researchers at the Centre for Gas Hydrate Research, at Heriot-Watt University is investigating how, in some conditions, seawater and carbon dioxide could combine into ice-like compounds in which the water molecules form cavities that act as cages, trapping the carbon dioxide molecules.

In the unlikely event of carbon dioxide starting to leak into the sea from an under-seabed disposal site (e.g. a depleted North Sea oil or gas reservoir), this process could add a second line of defence preventing its escape.

This is because, as the carbon dioxide comes into contact with the seawater in the pores of seafloor sediments above it, the compounds (called carbon dioxide hydrates) would form. This would create a secondary seal, blocking sediment pores and cracks, and slowing or preventing leakage of the carbon dioxide.

Professor Bahman Tohidi is leading the project. "We want to identify the type of seabed locations where sediment, temperature and pressure are conducive to the formation of carbon dioxide hydrates," he says. "This data can then be used to help identify the securest locations for carbon dioxide storage and can aid in the development of methods for monitoring potential CO2 leakage. In the future, it may even be possible to manipulate the system to promote CO2 hydrate formation, extending the number of maximum-security sites that are available."

Combining engineering expertise with computer modelling and geology skills, the research team is examining exactly how and where hydrates form, and establishing the optimum conditions that enable this process to take place. Their work includes the use of an experimental facility to simulate conditions in different sub-seabed environments with different types of sediment, and to observe hydrate formation when carbon dioxide is introduced. They have also developed tiny 2-dimensional 'sediment micromodels' (layers of glass etched with acid to simulate sediments) to help explore how hydrate crystals grow at pore scale in seafloor sediments.

Carbon dioxide emissions from fossil-fuelled power stations are a major contributor to climate change. With fossil fuels predicted to remain essential to world energy supplies for several decades, finding alternatives to releasing these emissions into the atmosphere is an urgent priority. Capturing them and then storing them long-term in stable geological formations under the sea is one promising option.

As well as helping to offset the environmental impact of fossil-fuelled power generation, carbon capture and storage is seen as a key 'bridging' technology that could help the emergence of a hydrogen energy economy, which may eventually replace today's largely carbon-based energy system. This is because, although hydrogen is expected to be produced in the long term from carbon-free renewable energy sources (e.g. via hydrolysis), in the shorter term it will probably be produced mainly from fossil fuels, generating carbon dioxide as part of the production process. Professor Tohidi stresses that carbon storage is only a short to medium-term solution. He says: "It should not be considered a limitless option but rather a stop-gap means to facilitate a smooth transition from fossil fuels to clean energy resources."

As well as contributing to climate change, carbon dioxide could pose a serious threat to marine life if it escaped from sub-seabed storage in significant quantities.

Source: Engineering and Physical Sciences Research Council

Explore further: Lazy microbes are key for soil carbon and nitrogen sequestration

Related Stories

Tens of billions promised to boost clean energy tech

November 29, 2015

Government and business leaders are banking on clean energy technology to fight global warming, kicking off this week's high-stakes climate change negotiations by pledging tens of billions of dollars for research and development.

Seven case studies in carbon and climate

November 13, 2015

Every part of the mosaic of Earth's surface—ocean and land, Arctic and tropics, forest and grassland—absorbs and releases carbon in a different way. Wild-card events such as massive wildfires and drought complicate the ...

Recommended for you

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(Phys.org)—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.