New carbon nanotube production method with the possibility of scale up to large industrial levels

July 21, 2004
Nanotube

McGill University researchers have developed a new method for producing carbon nanotubes that has great commercial promise. The work of Professor Jean-Luc Meunier and doctoral student David Harbec, both of the Department of Chemical Engineering, is the subject of a patent application, and the findings of their team have just been published in the Journal of Physics D: Applied Physics.

Carbon nanotubes (CNTs), discovered in 1991, are seamless cylinders composed of carbon atoms in a regular hexagonal arrangement, closed on both ends by hemispherical endcaps. They exhibit remarkable mechanical and electronic properties. Applications include high-strength composites, advanced sensors, electronic and optical devices, catalysts, batteries, and fuel cells.

The current low-volume production methods and high production costs are the limiting factors in the CNT high-growth market. The McGill researchers developed a new method and apparatus to produce CNTs with the possibility of scale up to large industrial levels that is based on thermal plasma technology. Plasmas form the fourth state of matter after gas, while the term "thermal plasmas" refers to their typical state of almost thermal equilibrium between electrons, ions, atoms and molecules. Thermal plasmas typically have temperatures between 4,000°C and 25,000°C, and are created by electric arcs or magnetic induction discharges.

"The use of carbon nanotubes in advanced materials is not only limited by their price, but more importantly by their unavailability in large quantities," notes Prof. Meunier. "This method using thermal plasmas brings production towards industrial levels at megawatt powers, and Quebec is an important player worldwide in thermal plasmas."

Meunier and Harbec are the authors, along with McGill researchers Liping Guo, Raynald Gauvin and Nadine El Mallah, of the article "Carbon nanotubes from the dissociation of C2Cl4 using a dc thermal plasma torch," appearing in the July 14 issue of Journal of Physics D: Applied Physics.

McGill University is currently seeking licensees to its patent-pending technology for producing CNTs, and the McGill researchers have just received an Idea to Innovation grant from the Natural Sciences and Engineering Research Council of Canada to help bring their technology closer to market.

Dr. Meunier is a member of the Plasma-Québec Network and of the Plasma Technology Research Centre, a McGill University and Université de Sherbrooke collaboration in the field of thermal plasmas. In terms of scientific manpower and funding, Quebec's contribution exceeds 50% of the total Canadian contribution to plasma technologies.

The original press release is available here

Explore further: The gas giant Jupiter

Related Stories

The gas giant Jupiter

August 26, 2015

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant known as Jupiter. Between it's constant, swirling clouds, its many, many moons, and its red spot, there are ...

Rosetta and Philae at comet 67P/Churyumov-Gerasimenko

June 22, 2015

Rosetta has been exploring comet 67P/Churyumov-Gerasimenko since summer 2014. In November 2014, the Philae lander landed on the surface of the comet. The first measurements by the scientific instruments allow conclusions ...

Reducing energy usage with nano-coatings

April 8, 2015

Thermochromic nano-coatings employed appropriately can help reduce energy usage and generate savings. The coatings either absorb heat or permit its reflection, depending on their temperature. Researchers will demonstrate ...

Scientists develop cool process to make better graphene

March 18, 2015

A new technique invented at Caltech to produce graphene—a material made up of an atom-thick layer of carbon—at room temperature could help pave the way for commercially feasible graphene-based solar cells and light-emitting ...

Recommended for you

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Interactive tool lifts veil on the cost of nuclear energy

August 24, 2015

Despite the ever-changing landscape of energy economics, subject to the influence of new technologies and geopolitics, a new tool promises to root discussions about the cost of nuclear energy in hard evidence rather than ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.