Laser loop couples quantum systems over a distance

For the first time, researchers have succeeded in creating strong coupling between quantum systems over a great distance. They accomplished this with a novel method in which a laser loop connects the systems, enabling nearly ...

In search of the lighting material of the future

At the Paul Scherrer Institute PSI, researchers have gained insights into a promising material for organic light-emitting diodes (OLEDs). The substance enables high light yields and would be inexpensive to produce on a large ...

Quantum-entangled light from a vibrating membrane

Entanglement, a powerful form of correlation among quantum systems, is an important resource for quantum computing. Researchers from the Quantum Optomechanics group at the Niels Bohr Institute, University of Copenhagen, recently ...

When plasmons reach atomic flatland

Researchers from the MPSD and the Lawrence Berkeley National Laboratory (LBNL) in the United States have discovered a significant new fundamental kind of quantum electronic oscillation, or plasmon, in atomically thin materials. ...

Highly sensitive sensors show promise in enhancing human touch

People rely on a highly tuned sense of touch to manipulate objects, but injuries to the skin and the simple act of wearing gloves can impair this ability. Surgeons, for example, find that gloves decrease their ability to ...

Researchers' golden touch enhances quantum technology

Scientists at the U.S. Naval Research Laboratory discovered a new platform for quantum technologies by suspending two-dimensional (2-D) crystals over pores in a slab of gold. This new approach may help develop new materials ...

Flexible photonic crystal from liquid thin-film metasurface

Photonic crystals are predicted to be one of the wonders of the 21st century. In the 20th century, new understanding of the electronic band structure-the physics that determines when a solid conducts or insulates-revolutionized ...

page 27 from 40