Related topics: charles darwin

AI used to test evolution's oldest mathematical model

Researchers have used artificial intelligence to make new discoveries, and confirm old ones, about one of nature's best-known mimics, opening up whole new directions of research in evolutionary biology.

Traders who 'sync up' make more money: study

(PhysOrg.com) -- Long-standing problems are quite often solved simultaneously by various people working alone. Take, for example, naturalists Charles Darwin and Alfred Russel Wallace, who separately proposed the theory of ...

Darwin's giant daisies help researchers understand evolution

Naturalists Alfred Russel Wallace and Charles Darwin both presented the theory of evolution at the same time in 1858. They thus changed both the course of biology and how we understand the natural world around us.

Examining sudden evolutionary change

When Charles Darwin first codified the theory of evolution by means of natural selection, he thought of it as a gradual process. "We see nothing of these slow changes in progress, until the hand of time has marked the long ...

How Galápagos finches evade a parasitic fly

Darwin's finches on the Galápagos Islands are once again providing insights into the theory of evolution, with two Flinders University studies investigating their dealings with a parasitic fly.

page 1 from 7

Evolution

In biology, evolution is change in the genetic material of a population of organisms from one generation to the next. Though changes produced in any one generation are small, differences accumulate with each generation and can, over time, cause substantial changes in the population, a process that can culminate in the emergence of new species. Indeed, the similarities amongst species suggest that all known species are descended from a common ancestor (or ancestral gene pool) through this process of gradual divergence .

The basis of evolution is the genes that are passed on from generation to generation; these produce an organism's inherited traits. These traits vary within populations, with organisms showing heritable differences (variation) in their traits. Evolution itself is the product of two opposing forces: processes that constantly introduce variation, and processes that make variants either become more common or rare. New variation arises in two main ways: either from mutations in genes, or from the transfer of genes between populations and between species. In species that reproduce sexually, new combinations of genes are also produced by genetic recombination, which can increase variation between organisms.

Two major mechanisms determine which variants will become more common or rare in a population. One is natural selection, a process that causes helpful traits (those that increase the chance of survival and reproduction) to become more common in a population and causes harmful traits to become more rare. This occurs because individuals with advantageous traits are more likely to reproduce, meaning that more individuals in the next generation will inherit these traits. Over many generations, adaptations occur through a combination of successive, small, random changes in traits, and natural selection of the variants best-suited for their environment. The other major mechanism driving evolution is genetic drift, an independent process that produces random changes in the frequency of traits in a population. Genetic drift results from the role that chance plays in whether a given trait will be passed on as individuals survive and reproduce.

Evolutionary biologists document the fact that evolution occurs, and also develop and test theories that explain its causes. The study of evolutionary biology began in the mid-nineteenth century, when studies of the fossil record and the diversity of living organisms convinced most scientists that species changed over time. However, the mechanism driving these changes remained unclear until the theories of natural selection were independently discovered by Charles Darwin and Alfred Wallace. Darwin's landmark work On the Origin of Species of 1859 brought the new theories of evolution by natural selection to a wide audience. Darwin's work soon led to overwhelming acceptance of evolution among scientists. In the 1930s, Darwinian natural selection was combined with Mendelian inheritance to form the modern evolutionary synthesis, which connected the units of evolution (genes) and the mechanism of evolution (natural selection). This powerful explanatory and predictive theory directs research by constantly raising new questions, and it has become the central organizing principle of modern biology, providing a unifying explanation for the diversity of life on Earth.

This text uses material from Wikipedia, licensed under CC BY-SA