Graphene enables clock rates in the terahertz range

Graphene—an ultrathin material consisting of a single layer of interlinked carbon atoms—is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand ...

Laser frequency combs may be the future of Wi-Fi

Wi-Fi and cellular data traffic are increasing exponentially but, unless the capacity of wireless links can be increased, all that traffic is bound to lead to unacceptable bottlenecks.

The future of wireless communications is terahertz

Electrical and optical engineers in Australia have designed a novel platform that could tailor telecommunication and optical transmissions. Collaborating scientists from the University of New South Wales in Sydney and Canberra, ...

Graphene enables high-speed electronics on flexible materials

A flexible detector for terahertz frequencies (1000 gigahertz) has been developed by Chalmers researchers using graphene transistors on plastic substrates. It is the first of its kind, and can extend the use of terahertz ...

Towards mastering terahertz waves?

The terahertz waves span frequency ranges between the infrared spectrum (used, for example, for night vision) and gigahertz waves (which find their application, among other, in Wi-Fi connections). Terahertz waves allow for ...

New record achieved in terahertz pulse generation

A group of scientists from TU Wien and ETH Zurich have succeeded in their attempts to generate ultrashort terahertz light pulses. With lengths of just a few picoseconds, these pulses are ideally suited to spectroscopic applications ...

page 4 from 8