Plasma etching pushes the limits of a shrinking world

Plasma etching (using an ionized gas to carve tiny components on silicon wafers) has long enabled the perpetuation of Moore's Law -- the observation that the number of transistors that can be squeezed into an integrated circuit ...

Research team has developed a fully functional flexible memory

The team of Professor Keon Jae Lee (Department of Materials Science and Engineering, KAIST) has developed fully functional flexible non-volatile resistive random access memory (RRAM) where a memory cell can be randomly accessed, ...

A faster, cheaper method for making transistors and chips

(PhysOrg.com) -- It may soon be possible manufacture the miniscule structures that make up transistors and silicon chips rapidly and inexpensively. Swiss scientists are currently investigating the use of dynamic stencil lithography, ...

IBM creates first graphene based integrated circuit

(PhysOrg.com) -- Taking a giant step forward in the creation and production of graphene based integrated circuits, IBM has announced in Science, the fabrication of a graphene based integrated circuit on a single chip. The ...

IBM introduces new graphene transistor

(PhysOrg.com) -- In a report published in Nature, Yu-ming Lin and Phaedon Avoris, IBM researchers, have announced the development of a new graphene transistor which is smaller and faster than the one they introduced in February ...

It's a wrap! Nanowire opens gate to new devices

(PhysOrg.com) -- In an interesting feat of nanoscale engineering, researchers at Lund University in Sweden and the University of New South Wales have made the first nanowire transistor featuring a concentric metal 'wrap-gate' ...

page 11 from 16