IBM creates first graphene based integrated circuit

June 10, 2011 by Bob Yirka, Phys.org report

Schematic illustration of a graphene mixer circuit. Image credit: Yu-Ming Lin/Science, 10.1126/science.1204428
(PhysOrg.com) -- Taking a giant step forward in the creation and production of graphene based integrated circuits, IBM has announced in Science, the fabrication of a graphene based integrated circuit on a single chip. The demonstration chip, known as a radio frequency "mixer" is capable of producing frequencies up to 10 GHz, and demonstrates that it is possible to overcome the adhesion problems that have stymied researchers efforts in creating graphene based IC's that can be used in analog applications such as cell phones or more likely military communications.

IBM and others had previously demonstrated that it was possible to create a graphene based transistor; this latest research takes that technology one step further by marrying the transistor and other electronics on a single chip to create a full-fledged integrated circuit.

The graphene circuits were started by growing a two or three layer graphene film on a which was then heated to 1400°C. The graphene IC was then fabricated by employing top gated, dual fingered graphene FET’s (field-effect ) which were then integrated with inductors. The active channels were made by spin-coating the wafer with a thin polymer and then applying a layer of hydrogen silsequioxane. The channels were then carved by e-beam lithography. Next, the excess graphene was removed with an oxygen plasma laser, and then the whole works was cleaned with acetone. The result is an integrated circuit that is less than 1mm2 in total size.

The chip produces output signals with mixed frequencies, hence its name, and while the prototype developed is not expected to be used in an actual device, future chips using the new technology are expected to be used in wireless communications. Since a major source of the funding for the research has been provided by the U.S. Defense Advanced Research Projects Agency (DARPA) the first uses of such a in an application is likely to be for secretive communications between airborne military pilots; the ultra high frequencies generated make it ideal for such secure applications.

Getting the graphene to adhere to other electronic components was by all accounts the most difficult part of the whole process, and apparently took the team, led by Phaedon Avouris, all of a year to accomplish; but it was clearly well worth the effort as research teams the world over continue to search for an eventual replacement to silicon in integrated chips, which by most accounts will hit its limits within the next few years.

Explore further: IBM introduces new graphene transistor

More information: Wafer-Scale Graphene Integrated Circuit, Science 10 June 2011: Vol. 332 no. 6035 pp. 1294-1297. DOI: 10.1126/science.1204428

ABSTRACT
A wafer-scale graphene circuit was demonstrated in which all circuit components, including graphene field-effect transistor and inductors, were monolithically integrated on a single silicon carbide wafer. The integrated circuit operates as a broadband radio-frequency mixer at frequencies up to 10 gigahertz. These graphene circuits exhibit outstanding thermal stability with little reduction in performance (less than 1 decibel) between 300 and 400 kelvin. These results open up possibilities of achieving practical graphene technology with more complex functionality and performance.

Related Stories

IBM introduces new graphene transistor

April 11, 2011

(PhysOrg.com) -- In a report published in Nature, Yu-ming Lin and Phaedon Avoris, IBM researchers, have announced the development of a new graphene transistor which is smaller and faster than the one they introduced in February ...

AMO Manufactures First Graphene Transistors

February 8, 2007

In the scope of his innovative project ALEGRA the AMO nanoelectronics group of Dr. Max Lemme was able to manufacture top-gated transistor-like field-effect devices from monolayer graphene.

A huge step toward mass production of graphene

March 10, 2010

Scientists have leaped over a major hurdle in efforts to begin commercial production of a form of carbon that could rival silicon in its potential for revolutionizing electronics devices ranging from supercomputers to cell ...

Graphene transistor could advance nanodevices

May 11, 2010

(PhysOrg.com) -- For years, scientists and researchers have been looking into the properties of carbon nanotubes and graphene for use in nanoelectronics. "There is no real mass application of devices based on graphene and ...

Recommended for you

Solution for next generation nanochips comes out of thin air

November 19, 2018

Researchers at RMIT University have engineered a new type of transistor, the building block for all electronics. Instead of sending electrical currents through silicon, these transistors send electrons through narrow air ...

Scientists create atomic scale, 2-D electronic kagome lattice

November 19, 2018

Scientists from the University of Wollongong (UOW), working with colleagues at China's Beihang University, Nankai University, and Institute of Physics at Chinese Academy of Sciences, have successfully created an atomic scale, ...

Graphene flickers at 400Hz in 2500ppi displays

November 16, 2018

With virtual reality (VR) sizzling in every electronic fair, there is a need for displays with higher resolution, frame rates and power efficiency. Now, a joint collaboration of researchers from SCALE Nanotech, Graphenea ...

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

nxtr
not rated yet Jun 10, 2011
researchers'

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.