Shaken, not stirred: Ultrafast skyrmion reshuffling

Smaller, faster, more energy-efficient: future requirements to computing and data storage are hard to fulfill and alternative concepts are continuously explored. Small magnetic textures, so-called skyrmions, may become an ...

Temporal control of light echoes

Scientists at Paderborn University, the Technical University of Dortmund and the University of Würzburg have for the first time used laser pulses to precisely control photon echoes, which can occur when light waves superimpose ...

Fluc­tu­a­tions in the void

In quantum physics, a vacuum is not empty, but rather steeped in tiny fluctuations of the electromagnetic field. Until recently it was impossible to study those vacuum fluctuations directly. Researchers at ETH Zurich have ...

What really happens at femtosecond junctions?

When beams of ultra-short laser pulses running in the same direction intersect with each other at a noticeable angle, various interactions occur between the pulses. These physical phenomena are complicated, and their mathematical ...

Coherent electron trajectory control in graphene

Electronic systems using light waves instead of voltage signals is advantageous, as electromagnetic light waves oscillate at petaherz frequency. This means that future computers could operate at speeds 1 million times faster ...

Extremely small and fast: Laser ignites hot plasma

When light pulses from an extremely powerful laser system are fired onto material samples, the electric field of the light rips the electrons off the atomic nuclei. For fractions of a second, a plasma is created. The electrons ...

page 2 from 4