Probing fundamental symmetries of nature with the Higgs boson

Where did all the antimatter go? After the Big Bang, matter and antimatter should have been created in equal amounts. Why we live in a universe of matter, with very little antimatter, remains a mystery. The excess of matter ...

Protecting high-performance, superconducting magnets

Researchers at Berkeley Lab's Accelerator Technology & Applied Physics (ATAP) Division have developed a method for detecting and predicting the local loss of superconductivity in large-scale magnets that are capable of generating ...

Random matrix theory approaches the mystery of the neutrino mass

When any matter is divided into smaller and smaller pieces, eventually all you are left with—when it cannot be divided any further—is a particle. Currently, there are 12 different known elementary particles, which in ...

Team first to detect neutrinos made by a particle collider

In a scientific first, a team led by physicists at the University of California, Irvine has detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, ...

page 8 from 40