Scientists Discover Light Force with 'Push' Power

(PhysOrg.com) -- A team of Yale University researchers has discovered a "repulsive" light force that can be used to control components on silicon microchips, meaning future nanodevices could be controlled by light rather ...

Graphene transistor could advance nanodevices

(PhysOrg.com) -- For years, scientists and researchers have been looking into the properties of carbon nanotubes and graphene for use in nanoelectronics. "There is no real mass application of devices based on graphene and ...

3-D view of 1-D nanostructures

Semiconductor gallium nitride nanowires show great promise in the next generation of nano- and optoelectronic systems. Recently, researchers at the McCormick School of Engineering have found new piezoelectric properties of ...

Glass electrodes used in nanoscale pump

(PhysOrg.com) -- A team of engineers from the U.S. and South Korea has developed what is believed to be the smallest man-made pump ever built, powered by a glass electrode. The pump is about the same size as a red blood corpuscle.

Atom-thick sheets unlock future technologies

(PhysOrg.com) -- A new way of splitting layered materials, similar to graphite, into sheets of material just one atom thick could lead to revolutionary new electronic and energy storage technologies.

Revisiting quantum effects in MEMS

New calculations shows that the influence of quantum effects on the operating conditions of nanodevices has, until now, been overestimated.

page 1 from 3

Nanotechnology

Nanotechnology (sometimes shortened to "nanotech") is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometres. Quantum mechanical effects are important at this quantum-realm scale.

Nanotechnology is very diverse, ranging from extensions of conventional device physics to completely new approaches based upon molecular self-assembly, from developing new materials with dimensions on the nanoscale to investigating whether we can directly control matter on the atomic scale. Nanotechnology entails the application of fields of science as diverse as surface science, organic chemistry, molecular biology, semiconductor physics, microfabrication, etc.

There is much debate on the future implications of nanotechnology. Nanotechnology may be able to create many new materials and devices with a vast range of applications, such as in medicine, electronics, biomaterials and energy production. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the toxicity and environmental impact of nanomaterials, and their potential effects on global economics, as well as speculation about various doomsday scenarios. These concerns have led to a debate among advocacy groups and governments on whether special regulation of nanotechnology is warranted.

This text uses material from Wikipedia, licensed under CC BY-SA