Discovery yields supertough, strong nanofibers

University of Nebraska-Lincoln materials engineers have developed a structural nanofiber that is both strong and tough, a discovery that could transform everything from airplanes and bridges to body armor and bicycles.

'Rhythm' of protein folding encoded in RNA, biologists find

(Phys.org)—Multiple RNA sequences can code for the same amino acid, but differences in their respective "optimality" slow or accelerate protein translation. Stanford biologists find optimal and non-optimal codons are consistently ...

Scaling up polymer blobs

Scientists use simulations to test the limits of their object of study—in this case thin films of polymers—to extremes of scale. In a study about to be published in the European Physical Journal E, Nava Schulmann, a researcher ...

New insights to the function of molecular chaperones

(Phys.org)—Heidelberg molecular biologists have gained new insights into the function of so-called molecular chaperones in protein synthesis. The team headed by Dr. Günter Kramer and Prof. Dr. Bernd Bukau of the DKFZ-ZMBH ...

A SMART(er) way to track influenza

In April 2009, the world took notice as reports surfaced of a virus in Mexico that had mutated from pigs and was being passed from human to human. The H1N1 "swine flu," as the virus was named, circulated worldwide, killing ...

Diatom biosensor could shine light on future nanomaterials

(PhysOrg.com) -- A glow coming from the glassy shell of microscopic marine algae called diatoms could someday help us detect chemicals and other substances in water samples. And the fact that this diatom can glow in response ...

page 4 from 8