Cosmic dawn occurred 250 to 350 million years after Big Bang

Cosmic dawn, when stars formed for the first time, occurred 250 million to 350 million years after the beginning of the universe, according to a new study led by researchers at University College London (UCL) and the University ...

There might be many planets with water-rich atmospheres

An atmosphere is what makes life on Earth's surface possible, regulating our climate and sheltering us from damaging cosmic rays. But although telescopes have counted a growing number of rocky planets, scientists had thought ...

How fast is the universe expanding? Galaxies provide one answer.

Determining how rapidly the universe is expanding is key to understanding our cosmic fate, but with more precise data has come a conundrum: Estimates based on measurements within our local universe don't agree with extrapolations ...

page 1 from 23

James Webb Space Telescope

The James Webb Space Telescope (JWST) is a planned infrared space observatory, the partial successor to the aging Hubble Space Telescope. The JWST will not be a complete successor, because it will not be sensitive to all of the light wavelengths that Hubble can see. The main scientific goal is to observe the most distant objects in the universe, those beyond the reach of either ground based instruments or the Hubble. The JWST project is a NASA-led international collaboration with contributors in 15 nations, the European Space Agency and the Canadian Space Agency.

Originally called the Next Generation Space Telescope (NGST), it was renamed in 2002 after NASA's second administrator, James E. Webb (1906-1992). Webb had overseen NASA 1961-68 from the beginning of the Kennedy administration through the end of the Johnson administration, thus overseeing all the critical first manned launches in the Mercury through Gemini programs, until just before the first manned Apollo flight.

Current plans call for the telescope to be launched on an Ariane 5 rocket in 2014, on a five-year mission. The JWST will reside in solar-orbit near the Sun-Earth L2 point, which is on a line passing from the Sun to the Earth, but about 1.5 million km farther away from the Sun than is the Earth. This position, which moves around the Sun in exact orbital synchrony with the Earth, will allow JWST to shield itself from infrared from both Sun and Earth, by using a single radiation shield positioned between the telescope and the Sun-Earth direction.

This text uses material from Wikipedia, licensed under CC BY-SA