Theory and experiment combine to shine a new light on proton spin

Nuclear physicists have long been working to reveal how the proton gets its spin. Now, a new method that combines experimental data with state-of-the-art calculations has revealed a more detailed picture of spin contributions ...

Studying the big bang with artificial intelligence

It could hardly be more complicated: tiny particles whir around wildly with extremely high energy, countless interactions occur in the tangled mess of quantum particles, and this results in a state of matter known as "quark-gluon ...

Physicists zoom in on gluons' contribution to proton spin

By analyzing the highest-energy proton collisions at the Relativistic Heavy Ion Collider (RHIC), a particle collider at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, nuclear physicists have gotten ...

A closer look at the perfect fluid

By combining data from two high-energy accelerators, nuclear scientists have refined the measurement of a remarkable property of exotic matter known as quark-gluon plasma. The findings reveal new aspects of the ultra-hot, ...

Physicists track sequential 'melting' of upsilons

Scientists using the Relativistic Heavy Ion Collider (RHIC) to study some of the hottest matter ever created in a laboratory have published their first data showing how three distinct variations of particles called upsilons ...

page 3 from 15