The chances of detecting clumps in atomic nuclei are growing

What do atomic nuclei really look like? Are the protons and neutrons they contain distributed chaotically? Or do they perhaps bind into alpha clusters, that is, clumps made up of two protons and two neutrons? In the case ...

How are hadrons born at the huge energies available in the LHC?

Our world consists mainly of particles built up of three quarks bound by gluons. The process of the sticking together of quarks, called hadronisation, is still poorly understood. Physicists from the Institute of Nuclear Physics ...

A very special run for the LHCb experiment

For the first time, the LHCb experiment at CERN has collected data simultaneously in collider and in fixed-target modes. With this, the LHCb special run is even more special.

The most exotic fluid has an unexpectedly low viscosity

Collisions of lead nuclei in the Large Hadron Collider (LHC) take place at such great energies that quarks that are normally confined inside nucleons are released and, together with the gluons that hold them together, form ...

For one day only, LHC collides xenon beams

Today, the LHC is getting a taste of something unusual. For eight hours, the Large Hadron Collider is accelerating and colliding xenon nuclei, allowing the large LHC experiments, ATLAS, ALICE, CMS and LHCb, to record xenon ...

page 8 from 14