The hunt for hot nuclear matter

In particle physics, a jet is a shower of collimated particles generated by a highly energetic quark or gluon. In a lead-lead collision, jets must traverse through quark gluon plasma, altering their energy, track and consistency.

STAR detector has a new inner core

For scientists tracking the transformation of protons and neutrons—the components of atomic nuclei that make up everything we see in the universe today—into a soup of fundamental building blocks known quark-gluon plasma, ...

Big Bang query: Mapping how a mysterious liquid became all matter

The leading theory about how the universe began is the Big Bang, which says that 14 billion years ago the universe existed as a singularity, a one-dimensional point, with a vast array of fundamental particles contained within ...

Compelling evidence for small drops of perfect fluid

Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at Brookhaven National ...

The state of the early universe: The beginning was fluid

Scientists from the Niels Bohr Institute, University of Copenhagen, and their colleagues from the international ALICE collaboration recently collided xenon nuclei in the superconducting Large Hadron Collider in order to gain ...

page 1 from 9

Gluon

Gluons (pronounced /ˈɡluːɒnz/; from English glue) are elementary particles which act as the exchange particles (or gauge bosons) for the color force between quarks, analogous to the exchange of photons in the electromagnetic force between two charged particles.

Since quarks make up the baryons, and the strong interaction takes place between baryons, one could say that the color force is the source of the strong interaction, or that the strong interaction is like a residual color force which extends beyond the baryons, for example when protons and neutrons are bound together in a nucleus.

In technical terms, they are vector gauge bosons that mediate strong interactions of quarks in quantum chromodynamics (QCD). Unlike the electrically neutral photon of quantum electrodynamics (QED), gluons themselves carry color charge and therefore participate in the strong interaction in addition to mediating it, making QCD significantly harder to analyze than QED.

This text uses material from Wikipedia, licensed under CC BY-SA