Related topics: cancer cells · chromosomes · dna damage

Study shows how cells prevent harmful extra copies of DNA

A protein that prepares DNA for replication also prevents the replication process from running out of control, according to a new study by Weill Cornell Medicine researchers. The work, published Jan. 5 in Molecular Cell, ...

MCM molecules impede the formation of DNA loops

The entire genomic material of a cell must be packed into a tiny cell nucleus in such a way, that on the one hand, it can be stored in an organized manner and, on the other hand, it can be transcribed, duplicated or repaired ...

Biologists discover a trigger for cell extrusion

For all animals, eliminating some cells is a necessary part of embryonic development. Living cells are also naturally sloughed off in mature tissues; for example, the lining of the intestine turns over every few days.

Transcription factors may inadvertently lock in DNA mistakes

Transcription factor proteins are the light switches of the human genome. By binding to DNA, they help turn genes 'on' or 'off' and start the important process of copying DNA into an RNA template that acts as a blueprint ...

DNA replication machinery captured at atom-level detail

July 15, 2019) Life depends on double-stranded DNA unwinding and separating into single strands that can be copied for cell division. St. Jude Children's Research Hospital scientists have determined at atomic resolution the ...

A mutational timer is built into the chemistry of DNA

If you had to copy billions of letters from one sheet of paper to another, you'd probably make a few mistakes. So it might not come as a surprise that when DNA makes a copy of its three-billion-base genetic code, it can slip ...

page 1 from 28

DNA replication

DNA replication, the basis for biological inheritance, is a fundamental process occurring in all living organisms to copy their DNA. This process is "semiconservative" in that each strand of the original double-stranded DNA molecule serves as template for the reproduction of the complementary strand. Hence, following DNA replication, two identical DNA molecules have been produced from a single double-stranded DNA molecule. Cellular proofreading and error-checking mechanisms ensure near perfect fidelity for DNA replication.

In a cell, DNA replication begins at specific locations in the genome, called "origins". Unwinding of DNA at the origin, and synthesis of new strands, forms a replication fork. In addition to DNA polymerase, the enzyme that synthesizes the new DNA by adding nucleotides matched to the template strand, a number of other proteins are associated with the fork and assist in the initiation and continuation of DNA synthesis.

DNA replication can also be performed in vitro (outside a cell). DNA polymerases, isolated from cells, and artificial DNA primers are used to initiate DNA synthesis at known sequences in a template molecule. The polymerase chain reaction (PCR), a common laboratory technique, employs such artificial synthesis in a cyclic manner to amplify a specific target DNA fragment from a pool of DNA.

This text uses material from Wikipedia, licensed under CC BY-SA