Physicists may have accidentally discovered a new state of matter

Humans have been studying electric charge for thousands of years, and the results have shaped modern civilization. Our daily lives depend on electric lighting, smartphones, cars, and computers, in ways that the first individuals ...

Say hello to the toughest material on Earth

Scientists have measured the highest toughness ever recorded, of any material, while investigating a metallic alloy made of chromium, cobalt, and nickel (CrCoNi). Not only is the metal extremely ductile—which, in materials ...

First observation of native ferroelectric metal

In a paper released today in Science Advances, Australian researchers describe the first observation of a native ferroelectric metal: a native metal with bistable and electrically switchable spontaneous polarization states—the ...

Physicists discover new properties of superconductivity

New findings from an international collaboration led by Canadian scientists may eventually lead to a theory of how superconductivity initiates at the atomic level, a key step in understanding how to harness the potential ...

The enduring mystery of snowflakes

Who hasn't caught a snowflake in a mitten and marveled at its starlike detail, and then recalled that no two snowflakes are alike? But these crystals of ice are even more different than one might imagine - there are needle-like ...

Sanyo announces world's most efficient solar module

(PhysOrg.com) -- Sanyo has announced its development of the world's most energy efficient solar module, the HIT-N230. The module was unveiled at a press conference run by Sanyo Electric's Solar Division.

page 1 from 40

Crystallinity

Crystallinity refers to the degree of structural order in a solid. In a crystal, the atoms or molecules are arranged in a regular, periodic manner. The degree of crystallinity has a big influence on hardness, density, transparency and diffusion. In a gas, the relative positions of the atoms or molecules are completely random. Amorphous materials, such as liquids and glasses, represent an intermediate case, having order over short distances (a few atomic or molecular spacings) but not over longer distances.

Many materials (such as glass-ceramics and some polymers), can be prepared in such a way as to produce a mixture of crystalline and amorphous regions. In such cases, crystallinity is usually specified as a percentage of the volume of the material that is crystalline. Even within materials that are completely crystalline, however, the degree of structural perfection can vary. For instance, most metallic alloys are crystalline, but they usually comprise many independent crystalline regions (grains or crystallites) in various orientations separated by grain boundaries; furthermore, they contain other defects (notably dislocations) that reduce the degree of structural perfection. The most highly perfect crystals are silicon boules produced for semiconductor electronics; these are large single crystals (so they have no grain boundaries), are nearly free of dislocations, and have precisely controlled concentrations of defect atoms.

Crystallinity can be measured using x-ray diffraction, but calorimetric techniques are also commonly used.

This text uses material from Wikipedia, licensed under CC BY-SA