Scientists create black arsenic visible infrared photodetectors

In recent years, the exceptional structure and fascinating electrical and optical properties of two-dimensional (2D) layered crystals have attracted widespread attention. Examples of such crystals include graphene, black ...

New migration strategy to boost CO2 reduction to CO

Classical strong metal–support interaction (SMSI) theory describes the way reducible oxide migrates to the surface of metal nanoparticles (NPs) to obtain metal@oxide encapsulation structure during high-temperature H2 thermal ...

page 1 from 21

Crystal structure

In mineralogy and crystallography, a crystal structure is a unique arrangement of atoms in a crystal. A crystal structure is composed of a motif, a set of atoms arranged in a particular way, and a lattice. Motifs are located upon the points of a lattice, which is an array of points repeating periodically in three dimensions. The points can be thought of as forming identical tiny boxes, called unit cells, that fill the space of the lattice. The lengths of the edges of a unit cell and the angles between them are called the lattice parameters. The symmetry properties of the crystal are embodied in its space group. A crystal's structure and symmetry play a role in determining many of its properties, such as cleavage, electronic band structure, and optical properties.

This text uses material from Wikipedia, licensed under CC BY-SA