Engineering robust and scalable molecular qubits

The concept of "symmetry" is essential to fundamental physics: a crucial element in everything from subatomic particles to macroscopic crystals. Accordingly, a lack of symmetry—or asymmetry—can drastically affect the ...

Exploring middle ground of solids and liquids

(Phys.org)—In experiments at SLAC National Accelerator Laboratory's Linac Coherent Light Source X-ray laser, researchers made snapshots of atomic-scale fluctuations in liquids and glasses. The results are a first step toward ...

Experimental method measures robustness of quantum coherence

Researchers at the UAB have come up with a method to measure the strength of the superposition coherence in any given quantum state. The method, published in the journal Proceedings of the Royal Society A, is based on the ...

An impressive and growing array of lasers at SLAC

In less than a decade, SLAC has built up an impressive array of dozens of laser systems – and a team of laser scientists and engineers – with capabilities that make it one of the most cutting-edge national laboratories ...

Long-wavelength laser will be able to take medicine fingerprints

A laser capable of working in the terahertz range – that of long-wavelength light from the far infrared to 1 millimetre – enables the 'fingerprint' of, say, a drug to be examined better than can be done using chemical ...

Maintaining vibrational coherence with electron spin

Electron spin is an important property that determines processes such as chemical reactivity and the lifetime of the electron state. Spin is exploited in several applications such as luminescent materials, phototherapy, photochemistry, ...

Macroscopic electron quantum coherence in a solid-state circuit

A team of researchers at the Centre de Nanosciences et de Nanotechnologies (C2N, CNRS/Univ. Paris-Saclay) has experimentally achieved the coherent propagation of electrons in circuits over macroscopic distances through a ...

page 3 from 3