Related topics: brain

Cro Magnon skull shows that our brains have shrunk

(PhysOrg.com) -- A new replica of an early modern human brain has provided further evidence for the theory that the human brain has been shrinking. The skull belonged to an elderly Cro Magnon man, whose skeleton is called ...

Neuroscientists uncover secret to intelligence in parrots

University of Alberta neuroscientists have identified the neural circuit that may underlie intelligence in birds, according to a new study. The discovery is an example of convergent evolution between the brains of birds and ...

Unexpectedly speedy expansion of human, ape cerebellum

A new study published in the Cell Press journal Current Biology on October 2 could rewrite the story of ape and human brain evolution. While the neocortex of the brain has been called "the crowning achievement of evolution ...

Brain-training for baseball robot

The human brain continually monitors and influences all bodily movements, helping the body adapt to different circumstances in order to maintain fine motor control. The part of the brain responsible for fine motor control, ...

Controlling movements with light

German researchers at the Ruhr-Universitaet have succeeded in controlling the activity of certain nerve cells using light, thus influencing the movements of mice. By changing special receptors in nerve cells of the cerebellum ...

Growing functioning brain tissue in 3D

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing tantalizing ...

Cerebellum

The cerebellum (Latin for little brain) is a region of the brain that plays an important role in motor control. It may also be involved in some cognitive functions such as attention and language, and in regulating fear and pleasure responses, but its movement-related functions are the most solidly established. The cerebellum does not initiate movement, but it contributes to coordination, precision, and accurate timing. It receives input from sensory systems and from other parts of the brain and spinal cord, and integrates these inputs to fine tune motor activity. Because of this fine-tuning function, damage to the cerebellum does not cause paralysis, but instead produces disorders in fine movement, equilibrium, posture, and motor learning.

In terms of anatomy, the cerebellum has the appearance of a separate structure attached to the bottom of the brain, tucked underneath the cerebral hemispheres. The surface of the cerebellum is covered with finely spaced parallel grooves, in striking contrast to the broad irregular convolutions of the cerebral cortex. These parallel grooves conceal the fact that the cerebellum is actually a continuous thin layer of tissue (the cerebellar cortex), tightly folded in the style of an accordion. Within this thin layer are several types of neurons with a highly regular arrangement, the most important being Purkinje cells and granule cells. This complex neural network gives rise to a massive signal-processing capability, but almost all of its output is directed to a set of small deep cerebellar nuclei lying in the interior of the cerebellum.

In addition to its direct role in motor control, the cerebellum also is necessary for several types of motor learning, the most notable one being learning to adjust to changes in sensorimotor relationships. Several theoretical models have been developed to explain sensorimotor calibration in terms of synaptic plasticity within the cerebellum. Most of them derive from early models formulated by David Marr and James Albus, which were motivated by the observation that each cerebellar Purkinje cell receives two dramatically different types of input: On one hand, thousands of inputs from parallel fibers, each individually very weak; on the other hand, input from one single climbing fiber, which is, however, so strong that a single climbing fiber action potential will reliably cause a target Purkinje cell to fire a burst of action potentials. The basic concept of the Marr-Albus theory is that the climbing fiber serves as a "teaching signal", which induces a long-lasting change in the strength of synchronously activated parallel fiber inputs. Observations of long-term depression in parallel fiber inputs have provided support for theories of this type, but their validity remains controversial.

This text uses material from Wikipedia, licensed under CC BY-SA