Mechanism 'splits' electron spins in magnetic material

Holding the right material at the right angle, Cornell researchers have discovered a strategy to switch the magnetization in thin layers of a ferromagnet—a technique that could eventually lead to the development of more ...

The future for antiferromagnetic information storage

A review published in IEEE Transactions on Magnetics compiles the approaches that have been employed for reading and storing information in antiferromagnets and answers the question about how to write on antiferromagnetics ...

Physicists tune a spin diode

A team of physicists at MIPT has offered a new design of a spin diode, placing the device between two kinds of antiferromagnetic materials. By adjusting the orientation of their antiferromagnetic axes, it is possible to change ...

Spintronics: Improving electronics with finer spin control

Spintronics is an emerging technology for manufacturing electronic devices that take advantage of electron spin and its associated magnetic properties, instead of using the electrical charge of an electron, to carry information. ...

Fine-tuning magnetic spin for faster, smaller memory devices

Unlike the magnetic materials used to make a typical memory device, antiferromagnets won't stick to your fridge. That's because the magnetic spins in antiferromagnets are oppositely aligned and cancel each other out.

Electron-bending effect could boost computer memory

A new magnetic material developed by RIKEN physicists could boost computer memory storage by enabling higher memory density and faster memory writing speeds. Their research has been published in the journal Nature Communications.

page 2 from 3