Fruit flies have a radical strategy for dealing with free radicals

fruit fly
Credit: CC0 Public Domain

Oxidative stress affects all living organisms, and the damage it causes is believed to play a part in cancer, diabetes, Alzheimer's disease and a number of other health conditions. Some animals have developed remarkable, even radical strategies for combating its effects. Researchers at EPFL observed that, under acute oxidative stress, flies belonging to the genus Drosophila, commonly known as fruit flies, remove and excrete damage-causing lipids, or fats, from their blood. The team has published its findings in the journal Immunity.

Like humans, produce molecules known as reactive oxygen species (ROS), a group that includes free radicals. Although they tend to get bad press for the harm they cause to our cells, these molecules also have beneficial effects, for instance alerting the immune system to an infection or repairing damaged tissue.

In normal circumstances, their harmful effects are counteracted by our cells' natural defense mechanisms, and by antioxidants such as vitamins C and E. Yet pathogens, smoking and can upset this delicate balance by sending ROS production into overdrive, eventually overwhelming our body's natural defenses.

Dropping like flies

The EPFL team, led by Professor Bruno Lemaitre, happened upon a previously unknown defense strategy against ROS in fruit flies after observing that mutant individuals grown in the lab were dying a few days after exposure to a normally benign pathogen.

An initial investigation revealed the reason: fruit flies normally produce a fat-binding protein in their kidneys, but a mutated gene was depriving the genetically altered flies of this capability.

"Because the flies were dropping fast, we decided to have a bit of fun," says Prof. Lemaitre. "We named the and the protein after Marco Materazzi, the Italian soccer player on the receiving end of Zinedine Zidane's infamous headbutt in the World Cup final."

A previously unknown mechanism

At this point, the team still hadn't made the link between the flies' death, the genetic mutation and . "We were baffled by what we discovered," explains Prof. Lemaitre. "Why were insects under pathogen-induced stress dying because they couldn't produce a fat-binding protein in their kidneys?"

The answer lies in a secondary mechanism of oxidative stress, by which free radicals attack lipids in the blood, producing toxic compounds and even more ROS. This self-perpetuating process, known as lipid peroxidation, has to be brought under control at all costs.

Fruit flies have a simple yet effective way of stopping this process from spiraling out of control: they remove one part of the equation altogether. Certain stressors cause the fly's kidneys to begin producing the Materazzi protein, which binds to the lipids in its blood. These are then passed out in the insect's feces.

"As we saw with our mutants, this mechanism really is a matter of life and death for a stressed insect," says Xiaoxue Li, a scientist in Prof. Lemaitre's group and the paper's lead author.

The scientists suspect this same mechanism could play an important role in other insects, and perhaps even in other animals. Previous studies have identified an allergen in cockroach droppings that bears many similarities to the Materazzi protein.

"Just like the in our study, all living organisms have to deal with oxidative damage," adds Prof. Lemaitre. "I wouldn't be surprised to see it become a major public health issue."

More information: Xiaoxue Li et al, Renal Purge of Hemolymphatic Lipids Prevents the Accumulation of ROS-Induced Inflammatory Oxidized Lipids and Protects Drosophila from Tissue Damage, Immunity (2020). DOI: 10.1016/j.immuni.2020.01.008

Journal information: Immunity

Citation: Fruit flies have a radical strategy for dealing with free radicals (2020, February 18) retrieved 18 April 2024 from https://phys.org/news/2020-02-fruit-flies-radical-strategy-free.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

What induces sleep? For fruit flies it's stress at the cellular level

10 shares

Feedback to editors