Powder could help cut CO2 emissions

December 19, 2018, University of Waterloo
Credit: CC0 Public Domain

Scientists at the University of Waterloo have created a powder that can capture CO2 from factories and power plants.

The powder, created in the lab of Zhongwei Chen, a chemical engineering professor at Waterloo, can filter and remove CO2 at facilities powered by before it is released into the atmosphere and is twice as efficient as conventional methods.

Chen said the new process to manipulate the size and concentration of pores could also be used to produce optimized powders for applications including water filtration and , the other main strand of research in his lab.

"This will be more and more important in the future," said Chen, "We have to find ways to deal with all the CO2 produced by burning fossil fuels."

CO2 molecules stick to the surface of carbon when they come in contact with it, a process known as adsorption. Since it is abundant, inexpensive and environmentally friendly, that makes carbon an excellent material for CO2 capture. The researchers, who collaborated with colleagues at several universities in China, set out to improve adsorption performance by manipulating the size and concentration of pores in carbon materials.

The technique they developed uses heat and salt to extract a black carbon powder from plant matter. Carbon spheres that make up the powder have many, many pores and the vast majority of them are less than one-millionth of a metre in diameter.

"The porosity of this material is extremely high," said Chen, who holds a Tier 1 Canada Research Chair in advanced materials for clean energy. "And because of their size, these pores can capture CO2 very efficiently. The performance is almost doubled."

Once saturated with at large point sources such as fossil fuel , the powder would be transported to storage sites and buried in underground geological formations to prevent CO2 release into the atmosphere.

A paper on the CO2 capture work, In-situ ion-activated carbon nanospheres with tunable ultramicroporosity for superior CO2 capture, appears in the journal Carbon.

Explore further: Next-gen solvents capture carbon with half the energy

Related Stories

Next-gen solvents capture carbon with half the energy

June 20, 2017

U.S. energy production could increase with the help of an improved carbon capture technology that use about half the energy of today's standard technologies. Emissions captured at fossil fuel power plants could in turn be ...

Process turns wheat flour into CO2-capturing micropores

October 6, 2016

Researchers have shown how a process for the "carbonization" of wheat flour creates numerous tiny pores that capture carbon dioxide, representing a potential renewable technology to reduce the industrial emission of carbon ...

Video: Developing carbon management solutions

July 20, 2017

Global consumption of fossil fuels is causing atmospheric carbon dioxide and other greenhouse gases to rise to levels that threaten human and environmental sustainability. These gases warm the planet and negatively impact ...

Recommended for you

Afromontane forests and climate change

January 17, 2019

In the world of paleoecology, little has been known about the historical record of ecosystems in the West African highlands, especially with regard to glacial cycles amidst a shifting climate and their effects on species ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.