Scientists solve structure of complement C5a receptor

January 4, 2018, Heptares Therapeutics

Scientists at Heptares Therapeutics have published the first high-resolution X-ray crystal structure of the complement C5a receptor (a G protein-coupled receptor, GPCR) binding a small molecule allosteric antagonist.

The findings, published in Nature today, reveal the location of a new allosteric binding site outside the transmembrane helical bundle and provide insights to the mechanisms by which small molecules interact with and modulate the receptor. This research further emphasises the potential importance and value of structure-based methods to enable the design of selective and optimised targeting GPCRs for treating a range of diseases.

The C5a receptor (C5a anaphylatoxin chemotactic receptor 1, also known as CD88) plays a key role in the . It is part of the complement system, a crucial component of the host response to infection and tissue damage. Activation of the complement cascade generates anaphylatoxins, including the glycoprotein C5a, which exerts a pro-inflammatory effect via the C5a receptor.

Inhibitors of the complement system are of interest as potential drugs for treating diseases including sepsis, rheumatoid arthritis (RA), Crohn's disease and ischaemia-reperfusion injuries. More recently a role of C5a in neurodegenerative conditions such as Alzheimer's disease has been identified. C5a also plays a role in cancer through actions on tumour cells, angiogenesis and regulation of the immune cells in the tumour microenvironment. Peptide antagonists based on the C5a ligand have been evaluated in clinical trials in psoriasis and RA, however these peptides exhibited problems with off target activity, production costs, potential immunogenicity and poor oral bioavailability.

Fiona Marshall, chief scientific officer of Heptares and Sosei, said, "Our ability to determine the structures of GPCRs with high definition alongside our other structure-based drug design technologies and expertise provides a unique opportunity to tackle high value but difficult targets. With the C5a receptor, these capabilities and the insights they generate provide opportunities to design novel and selective therapeutics to address areas of clear medical need."

Explore further: First full-length structure of GLP-1 receptor bound to peptide agonist

More information: Nathan Robertson et al. Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727, Nature (2018). DOI: 10.1038/nature25025

Related Stories

Closing in on advanced prostate cancer

December 13, 2017

In most cases, prostate cancer is cured by surgery and/or radiotherapy. However, 20 percent of patients will need treatment to remove tumour cells but this treatment ceases to be effective after two or three years and the ...

Recommended for you

Field-responsive mechanical metamaterials (FRMMs)

December 11, 2018

In a recent study published in Science Advances, materials scientists Julie A. Jackson and colleagues presented a new class of materials architecture called field-responsive mechanical metamaterials (FRMM). The FRMMs exhibit ...

Researchers develop smartphone-based ovulation test

December 11, 2018

Investigators from Brigham and Women's Hospital are developing an automated, low-cost tool to predict a woman's ovulation and aid in family planning. Capitalizing on advancements in several areas, including microfluidics, ...

CRISPR method for conditional gene regulation

December 11, 2018

A team of engineers at the University of Delaware has developed a method to use CRISPR/Cas9 technology to set off a cascade of activities in cells, a phenomenon known as conditional gene regulation. Their method, described ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.