Why do we need to know about prime numbers with millions of digits?

January 12, 2018 by Ittay Weiss, The Conversation
Credit: Shutterstock

Prime numbers are more than just numbers that can only be divided by themselves and one. They are a mathematical mystery, the secrets of which mathematicians have been trying to uncover ever since Euclid proved that they have no end.

An ongoing project – the Great Internet Mersenne Prime Search – which aims to discover more and more primes of a particularly rare kind, has recently resulted in the discovery of the largest prime known to date. Stretching to 23,249,425 digits, it is so large that it would easily fill 9,000 book pages. By comparison, the number of atoms in the entire observable universe is estimated to have no more than 100 digits.

The number, simply written as 2⁷⁷²³²⁹¹⁷-1 (two to the power of 77,232,917, minus one) was found by a volunteer who had dedicated 14 years of computing time to the endeavour.

You may be wondering, if the number stretches to more than 23m digits, why we need to know about it? Surely the most important numbers are the ones that we can use to quantify our world? That's not the case. We need to know about the properties of different numbers so that we can not only keep developing the technology we rely on, but also keep it secure.

Secrecy with prime numbers

One of the most widely used applications of prime numbers in computing is the RSA encryption system. In 1978, Ron Rivest, Adi Shamir and Leonard Adleman combined some simple, known facts about numbers to create RSA. The system they developed allows for the secure transmission of information – such as – online.

The first ingredient required for the algorithm are two large prime numbers. The larger the numbers, the safer the encryption. The counting numbers one, two, three, four, and so on – also called the natural numbers – are, obviously, extremely useful here. But the prime numbers are the building blocks of all and so even more important.

Take the number 70 for example. Division shows that it is the product of two and 35. Further, 35 is the product of five and seven. So 70 is the product of three smaller numbers: two, five, and seven. This is the end of the road for 70, since none of these can be further broken down. We have found the primal components that make up 70, giving its prime factorisation.

Multiplying two numbers, even if very large, is perhaps tedious but a straightforward task. Finding prime factorisation, on the other hand, is extremely hard, and that is precisely what the RSA system takes advantage of.

Suppose that Alice and Bob wish to communicate secretly over the internet. They require an encryption system. If they first meet in person, they can devise a method for encryption and decryption that only they will know, but if the initial communication is online, they need to first openly communicate the encryption system itself – a risky business.

However, if Alice chooses two large prime numbers, computes their product, and communicates this openly, finding out what her original prime numbers were will be a very difficult task, as only she knows the factors.

So Alice communicates her product to Bob, keeping her factors secret. Bob uses the product to encrypt his message to Alice, which can only be decrypted using the factors that she knows. If Eve is eavesdropping, she cannot decipher Bob's message unless she acquires Alice's factors, which were never communicated. If Eve tries to break the product down into its prime factors – even using the fastest supercomputer – no known algorithm exists that can accomplish that before the sun will explode.

The primal quest

Large prime numbers are used prominently in other cryptosystems too. The faster computers get, the larger the numbers they can crack. For modern applications, prime numbers measuring hundreds of digits suffice. These numbers are minuscule in comparison to the giant recently discovered. In fact, the new prime is so large that – at present – no conceivable technological advancement in computing speed could lead to a need to use it for cryptographic safety. It is even likely that the risks posed by the looming quantum computers wouldn't need such monster numbers to be made safe.

It is neither safer cryptosystems nor improving computers that drove the latest Mersenne discovery, however. It is mathematicians' need to uncover the jewels inside the chest labelled "prime numbers" that fuels the ongoing quest. This is a primal desire that starts with counting one, two, three, and drives us to the frontiers of research. The fact that online commerce has been revolutionised is almost an accident.

The celebrated British mathematician Godfrey Harold Hardy said: "Pure mathematics is on the whole distinctly more useful than applied. For what is useful above all is technique, and mathematical technique is taught mainly through pure mathematics". Whether or not huge , such as the 50th known Mersenne prime with its millions of digits, will ever be found useful is, at least to Hardy, an irrelevant question. The merit of knowing these numbers lies in quenching the human race's intellectual thirst that started with Euclid's proof of the infinitude of primes and still goes on today.

Explore further: GIMPS project discovers largest known prime number

Related Stories

GIMPS project discovers largest known prime number

January 4, 2018

The Great Internet Mersenne Prime Search (GIMPS) has discovered the largest known prime number, 277,232,917-1, having 23,249,425 digits. A computer volunteered by Jonathan Pace made the find on December 26, 2017.

University professor discovers largest prime number to date

February 6, 2013

(Phys.org)—Curtis Cooper, professor of math and computer science at the University of Central Missouri, has discovered the largest prime number to date, it's 257,885,161 – 1. It has 17 million digits and is also a Mersenne ...

The sum of digits of prime numbers is evenly distributed

May 12, 2010

(PhysOrg.com) -- On average, there are as many prime numbers for which the sum of decimal digits is even as prime numbers for which it is odd. This hypothesis, first made in 1968, has recently been proven by French researchers ...

New largest prime number found

January 20, 2016

(Phys.org)—A team at the University of Central Missouri, headed by Curtis Cooper has announced, via press release from the Mersenne organization, that they have found the largest prime number ever—it is 274,207,281 – ...

Recommended for you

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...

LMC S154 is a symbiotic recurrent nova, study suggests

February 21, 2019

Astronomers have conducted observations of a symbiotic star in the Large Magellanic Cloud (LMC), known as LMC S154, which provide new insights about the nature of this object. Results of these observations, presented in a ...

Bacteria can survive starvation in zombie mode

February 21, 2019

Bacteria that are exposed to a hostile environment, for example with antibiotics or very few nutrients, can sometimes survive by 'going to sleep." Biologists from the University of Amsterdam (UvA) have discovered an unknown, ...

Origins of giant extinct New Zealand bird traced to Africa

February 21, 2019

Scientists have revealed the African origins of New Zealand's most mysterious giant flightless bird – the now extinct adzebill – showing that some of its closest living relatives are the pint-sized flufftails from Madagascar ...

How to freeze heat conduction

February 21, 2019

Physicists have discovered a new effect, which makes it possible to create excellent thermal insulators which conduct electricity. Such materials can be used to convert waste heat into electrical energy.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.