Study of Uranus suggests some of its moons are on a collision course

September 6, 2017 by Bob Yirka, Phys.org report
Voyager 2 image of the Uranian moons Portia, Cressida, and Ophelia. Credit: NASA

(Phys.org)—A trio of researchers, two with the University of Idaho, the other with Wellesley College, has found evidence suggesting that two pairs of Uranus's moons are on a collision course. Robert Chancia, Matthew Hedman and Richard French have uploaded a paper describing their observations to the arXiv preprint server.

Uranus is the seventh planet from the sun and the third largest. Prior research has suggested that it is, like Neptune, an ice giant (as compared to ). It has also been found to have the chilliest atmosphere among all the in the solar system. And it has both a ring system and multiple satellites—27 in all. The satellites orbiting the planet are believed to be very low mass compared to the moons of the other planets, and some of them, according to this latest research, are on a that will shatter them into small bits.

The researchers report that they were studying the planet's rings, which are collectively called Eta, and discovered that they had an oddly shaped —not round or even circular. Instead, they describe it as sort of triangular. More study showed that the odd orbit of the rings was due to from Cressida—one of the planet's moons. The gravitational impact is exaggerated, they note, due to the keeping pace with the orbit of the planet. The particles in the ring, on the other hand, move faster than the moon. This results in the moon tugging on the at as it passes by, causing the odd orbital shape. The tug exerted by the moon on the rings allowed the team to deduce its mass. They found that it is around 1/300,000th that of our own moon. Also, it has only 86 percent of the density of water, which indicates it is porous.

In studying the orbits of the moons, the researchers found that Cressida is on a path that will cause it to collide with another moon called Desdemona, which currently moves in an orbit just 900 kilometers from Cressida's. The gravity of Cressida is slowly pulling them closer together and will cause them to crash into one another in approximately 1 million years. They also found the same to be true for Cupid and Belinda, which will collide sometime later.

The researchers note that material in the inner rings around Uranus appears likely to be the remnants of other moons that were destroyed when they collided.

Explore further: Possible first sighting of an exomoon

More information: Weighing Uranus' moon Cressida with the η ring, arXiv:1708.07566 [astro-ph.EP] arxiv.org/abs/1708.07566

Abstract
The η ring is one of the narrow rings of Uranus, consisting of a dense core that is 1-2 km wide and a diffuse outer sheet spanning about 40 km. Its dense core lies just exterior to the 3:2 Inner Lindblad Resonance of the small moon Cressida. We fit the η ring radius residuals and longitudes from a complete set of both ground-based and Voyager stellar and radio occultations of the Uranian rings spanning 1977-2002. We find variations in the radial position of the η ring that are likely generated by this resonance, and take the form of a 3-lobed structure rotating at an angular rate equal to the mean motion of the moon Cressida. The amplitude of these radial oscillations is 0.667±0.113 km, which is consistent with the expected shape due to the perturbations from Cressida. The magnitude of these variations provides the first measurement of the mass and density of the moon Cressida (m=2.5±0.4×1017 kg and ρ=0.86±0.16 g/cm3) or, indeed, any of Uranus' small inner moons. A better grasp of inner Uranian satellite masses will provide another clue to the composition, dynamical stability, and history of Uranus' tightly packed system of small moons.

Related Stories

Possible first sighting of an exomoon

July 28, 2017

(Phys.org)—A team led by David Kipping of Columbia University has spotted what might be the first evidence of an exomoon. They have written a paper describing their findings and have uploaded it to the arXiv preprint server.

Uranus may have two undiscovered moons

October 24, 2016

NASA's Voyager 2 spacecraft flew by Uranus 30 years ago, but researchers are still making discoveries from the data it gathered then. A new study led by University of Idaho researchers suggests there could be two tiny, previously ...

Hubble sees martian moon orbiting the Red Planet

July 20, 2017

The sharp eye of NASA's Hubble Space Telescope has captured the tiny moon Phobos during its orbital trek around Mars. Because the moon is so small, it appears star-like in the Hubble pictures.

Which planets have rings?

February 6, 2015

Planetary rings are an interesting phenomenon. The mere mention of these two words tends to conjure up images of Saturn, with its large and colorful system of rings that form an orbiting disk. But in fact, several other planets ...

Recommended for you

Solar-powered rover approaching 5,000th Martian dawn

February 16, 2018

The sun will rise on NASA's solar-powered Mars rover Opportunity for the 5,000th time on Saturday, sending rays of energy to a golf-cart-size robotic field geologist that continues to provide revelations about the Red Planet.

Supermassive black holes are outgrowing their galaxies

February 15, 2018

The growth of the biggest black holes in the Universe is outrunning the rate of formation of stars in the galaxies they inhabit, according to two new studies using data from NASA's Chandra X-ray Observatory and other telescopes ...

Hubble sees Neptune's mysterious shrinking storm

February 15, 2018

Three billion miles away on the farthest known major planet in our solar system, an ominous, dark storm - once big enough to stretch across the Atlantic Ocean from Boston to Portugal - is shrinking out of existence as seen ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.