Astronomy from 40,000 feet and 43.5 degrees south

September 1, 2017 by Nicholas A. Veronico, NASA
SOFIA operated from Christchurch International Airport during the 2017 deployment. Every science observing flight path flown is shown here. Credit: NASA/SOFIA/S. Jensen, K. Bell

The Stratospheric Observatory for Infrared Astronomy, SOFIA, completed its fourth set of observations from Christchurch, New Zealand. The team spent seven weeks operating from the U.S. Antarctic Program facility at Christchurch International Airport, enabling researchers onboard to observe celestial objects that are best studied from the Southern Hemisphere.

Observing highlights from this year included studying Supernova 1987A, the closest and one of the brightest exploding stars in more than 400 years.  Researchers used SOFIA's airborne location, above 99 percent of the infrared blocking water vapor in Earth's atmosphere, and its powerful instruments, to study the material expanding from the supernova. Other telescopes, including the Hubble Space Telescope, the Chandra X-ray Observatory and SOFIA's predecessor the Kuiper Airborne Observatory, have previously studied this supernova, but the instruments on SOFIA are the only tools currently able to study the debris around it at infrared wavelengths. These observations will help scientists better understand the characteristics of the star's debris which can only be seen with infrared light and may become the building blocks of future planets and stars.  

SOFIA's researchers also continued to study star formation in two nearby galaxies called the Large and Small Magellanic Clouds, which are best viewed from the Southern Hemisphere. Comparing star formation in these to in our own Milky Way Galaxy enhances the understanding of how the earliest generations of stars in our universe formed.

During a specially timed flight, scientists from the New Horizons mission used SOFIA to search for debris around the spacecraft's next flyby target, a Kuiper Belt Object called MU69. Using data from the Hubble Space Telescope and the European Space Agency's Gaia satellite, the team flew into the predicted path of MU69's shadow as it crossed Earth's surface. Searching for debris is an important step in planning the spacecraft's flyby on January 1, 2019.  These observations continued a history of collaboration between the two missions as researchers used SOFIA to make similar observations of Pluto two weeks before the spacecraft's flyby in 2015.

"The MU69 occultation was the most challenging occultation we've studied, but we optimized our observing strategy," said Kimberly Ennico Smith, SOFIA project scientist. "We also continued airborne astronomy's legacy of making infrared observations of Supernova 1987A at wavelengths inaccessible to other observatories. We are eagerly awaiting the results from all of these observations."

After its seven weeks of successful Southern observations, the team and observatory returned to its base at NASA's Armstrong Flight Research Center's Hangar 703 in Palmdale, California.

SOFIA is a Boeing 747SP jetliner modified to carry a 100-inch diameter telescope. It is a joint project of NASA and the German Aerospace Center, DLR.

Explore further: SOFIA heads to New Zealand to study Southern Hemispheric skies

Related Stories

SOFIA points telescope toward Pluto occultation

June 29, 2015

The Stratosphere Observatory for Infrared Astronomy (SOFIA) is a modified Boeing 747SP aircraft that makes celestial observations with its German-built 100-inch telescope. The telescope is enhanced to collect infrared radiation, ...

SOFIA airborne observatory begins 2015 science campaign

January 14, 2015

The Stratospheric Observatory for Infrared Astronomy, or SOFIA, Program began its third season of science flights on Jan. 13, 2015. SOFIA is NASA's next generation flying observatory and is fitted with a 2.5-meter (100-inch) ...

SOFIA completes busy year, highlights of 2015

December 29, 2015

2015 was an exciting year for NASA's flying observatory, the Stratospheric Observatory for Infrared Astronomy, or SOFIA. By flying at altitudes of more than 40,000 feet, above more than 99% of the water vapor in Earth's atmosphere, ...

SOFIA Begins 2015 Southern Hemisphere Science Flights

June 22, 2015

NASA's Stratospheric Observatory for Infrared Astronomy, SOFIA, departed from Christchurch, New Zealand at 6:20 pm local time June 19 for the first of 15 planned Southern Hemisphere deployment science flights.

Recommended for you

Hunting molecules to find new planets

June 19, 2018

It's impossible to obtain direct images of exoplanets as they are masked by the high luminous intensity of their stars. However, astronomers led by UNIGE propose detecting molecules present in the exoplanet's atmosphere in ...

Exploring planetary plasma environments from your laptop

June 15, 2018

A new database of plasma simulations, combined with observational data and powerful visualisation tools, is providing planetary scientists with an unprecedented way to explore some of the Solar System's most interesting plasma ...

NASA encounters the perfect storm for science

June 14, 2018

One of the thickest dust storms ever observed on Mars has been spreading for the past week and a half. The storm has caused NASA's Opportunity rover to suspend science operations, but also offers a window for four other spacecraft ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.