Astronomers resolve mystery of white dwarf's mass

September 11, 2017, U.S. Naval Observatory
This figure illustrates the new orbital solution, plotted together with all published data in the Washington Double Star database as well as the heretofore unpublished data in the recent speckle measurements. In this figure, micrometric observations are indicated by green plus signs, photographic measures by purple asterisks, adaptive optics by blue filled circles, CCD measures by purple triangles and the four new speckle measures as blue stars. A dot-dash line indicates the line of nodes, and a curved arrow in the lower right corner indicates the direction of orbital motion. The scale, in arcseconds, is given on the left and bottom axis. Finally, the previous orbit calculation is shown as a dashed ellipse. Credit: U.S. Naval Observatory

New observations of the white dwarf/red dwarf binary star 40 Eridani BC by astronomers at the U.S. Naval Observatory (USNO) have revealed new, definitive values for the orbital period and masses of the components of this interesting stellar pair. A paper describing the observations and the results by Dr. Brian Mason, Dr. Bill Hartkopf, and intern Korie Miles has been accepted for publication in the Astronomical Journal.

40 Eridani BC (also known as Omicron-2 Eridani) is a well-known double star that has been observed by many astronomers since its properties were first accurately measured by William Rutter Dawes in 1867. It is located about 16 light-years from Earth and is easily observed in amateur telescopes. Measuring the period of the component stars as they their center of mass and knowing their distance allows astronomers to compute their combined masses. As more observations were recorded over the decades, the characteristics of the stars' orbits were computed, allowing a first determination of the stars' combined masses. It quickly became apparent that 40 Eridani BC was an unusual system.

By combining the computed orbits with spectrographic data and the stars' nearby location, it was found that the brighter component was a "white dwarf," the highly compressed remnant of a star that has collapsed after exhausting its nuclear fuel. The fainter component is a "red dwarf," a low-luminosity, low-mass star that will feebly shine for hundreds of billions of years. While may be the most prevalent types of "normal" stars in the galaxy, white dwarf stars are comparatively rare. 40 Eridani B is the second-brightest white dwarf known and is the only one that can easily be seen in backyard telescopes. It was also the first to have its mass determined by measuring its , a characteristic of very dense objects.

Utilizing a technique called "speckle interferometry," Dr. Mason and his colleagues observed 40 Eridani BC over the course of six nights in early 2017 using the USNO's 66-cm (26-inch) "Great Equatorial" refractor telescope, purchased in 1873. The lens on this telescope was used by astronomer Asaph Hall to discover the moons of Mars, Phobos and Deimos, in 1877. Re-mounted at its present site in 1893, the telescope has been used for measuring double since that time.

Prior orbit calculations for 40 Eridani BC yielded a discrepancy between the mass of the white dwarf component derived from its orbital motion and that determined by its gravitational redshift.

"Due to the long period of most visual binaries and the understandable impatience of calculators," says Dr. Mason, "orbits are often calculated when they 'can' be and not necessarily when they 'should' be."

The newly reported observations by Dr. Mason et al. and archival observations allow a new orbit to be calculated which resolves that discrepancy. The new observations indicate that the components of 40 Eridani BC circle each other with a period of 230.29 +/- 0.68 years, about 20 years less than the previous determination. The mass of the white dwarf component is now believed to be 0.573 +/- 0.018 solar masses, about 0.15 solar mass greater than the previous estimate and closer to the result obtained by gravitational redshift.

Dr. Mason notes, "Now that the from the orbit matches that from the gravitational redshift, this source of consternation has gone away and it is not necessary to invoke other more exotic solutions to the problem. Patience is a virtue."

Explore further: Astrophysicist predicts detached, eclipsing white dwarfs to merge into exotic star

More information: Binary Star Orbits. V. The Nearby White Dwarf - Red Dwarf pair 40 Eri BC, Brian D. Mason, William I. Hartkopf & Korie N. Miles, 2017, to appear in the Astronomical Journal arxiv.org/abs/1707.03635

Related Stories

Binary white dwarf stars

May 4, 2011

(PhysOrg.com) -- When a star like our sun gets to be very old, after another seven billion years or so, it will no longer be able to sustain burning its nuclear fuel.

Astronomers detect flickering from the star EF Aquilae

March 1, 2017

(Phys.org)—European researchers have detected optical flickering from a distant symbiotic star known as EF Aquilae (EF Aql for short). The new findings, presented Feb. 27 on the arXiv pre-print server, offer important hints ...

Space telescopes pinpoint elusive brown dwarf

November 10, 2016

In a first-of-its-kind collaboration, NASA's Spitzer and Swift space telescopes joined forces to observe a microlensing event, when a distant star brightens due to the gravitational field of at least one foreground cosmic ...

Recommended for you

HESS J1943+213 is an extreme blazar, study finds

June 21, 2018

An international group of astronomers have carried out multi-wavelength observations of HESS J1943+213 and found evidence supporting the hypothesis that this gamma-ray source is an extreme blazar. The finding is reported ...

'Red nuggets' are galactic gold for astronomers

June 21, 2018

About a decade ago, astronomers discovered a population of small, but massive galaxies called "red nuggets." A new study using NASA's Chandra X-ray Observatory indicates that black holes have squelched star formation in these ...

The Rosetta stone of active galactic nuclei deciphered

June 21, 2018

A galaxy with at least one active supermassive black hole – named OJ 287 – has caused many irritations and questions in the past. The emitted radiation of this object spans a wide range – from the radio up to the highest ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

wduckss
1 / 5 (4) Sep 12, 2017
"white dwarf," the highly compressed remnant of a star that has collapsed after exhausting its nuclear fuel. "
The authors are deep in the time of old Helen.
".. and it is not necessary to invoke other more exotic solutions to the problem."
Exotic replaced earlier exotics.
The difference between white and red "dwarves" is only in rotation speed. Slow rotation = lower temperature and vice versa.
"Reassessment of the old but still employed theories of Universe through database checking" Https://www.acade...checking
Da Schneib
not rated yet Sep 12, 2017
Nice, and that's a nice piece of glass, too. Nothing like a really big achromat. I got mine a decade ago, a Televue 5" NP127is. I've gotten some good stuff with it. That's Alvan Clark glass, and they're famous. I'd love to see the Ring Nebula through that.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.