House-sized near Earth objects rarer than we thought

August 30, 2017, National Optical Astronomy Observatory
Observations with the Blanco Telescope (left) determined the number of house-sized objects in near-Earth orbit. Objects in this size range are responsible for Chelyabinsk-like bolide events (right). Credits: left – T. Abbott & NOAO/AURA/NSF; right – A. Alishevskikh

In 2013 a small meteoroid, the size of a house, hurtled through Earth's atmosphere and exploded over the Russian city of Chelyabinsk. The explosion shattered windows, and more than a thousand people were treated for injuries from flying debris. How many similar-sized rocks have orbits that bring them close to Earth? A new study has answered that question using the Dark Energy Camera (DECam) on the Blanco telescope at the Cerro Tololo Inter-American Observatory. The result lends new insights into the nature and origin of small meteoroids.

Near Earth Objects (NEOs) are asteroids or comets whose orbits bring them close to Earth's orbit. Their close approach makes them a potential Earth-impact hazard capable of causing widespread destruction.

While very large (10 kilometer-sized) impactors can induce mass extinction events like the event that led to the demise of the dinosaurs, much smaller impactors can also wreak havoc. The meteoroid that exploded in Chelyabinsk unleashed a powerful shock wave that destroyed buildings and blew people off their feet. Relatively petite at a 'mere' 17 meters in diameter, comparable to the size of a 6-story building, the impactor, when it exploded, released about ten times the energy of the Hiroshima atomic bomb.

A survey for NEOs being carried out with DECam on the 4-m Blanco telescope at the Cerro Tololo Inter-American Observatory has now estimated the number of objects in near-Earth orbit that are similar in size to the Chelyabinsk impactor. Lori Allen, Director of the Kitt Peak National Observatory and the lead investigator on the study, explained, "There are around 3.5 million NEOs larger than 10 meters, a population ten times smaller than inferred in previous studies. About 90% of these NEOs are in the Chelyabinsk size range of 10-20 meters."

The study, to be published in the Astronomical Journal, is the first to derive, from a single observational data set with no external model assumptions, the size distribution of NEOs from 1 kilometer down to 10 meters. A similar result was obtained in an independent study that analyzed multiple data sets (Tricarico 2017).

What’s interesting about house-sized Near Earth Objects? This trailer video describes the motivation for the study. Credit: Pete Marenfeld

While the surprising results do not alter the impact threat from house-sized NEOs, which is constrained by the observed rate of Chelyabinsk-like bolide events, they do lend new insights into the nature and origin of small NEOs.

David Trilling (Northern Arizona University), the first author of the study, explained how the study reconciled the surprisingly small number of house-sized NEOs with the observed rate of Chelyabinsk-like events: "If house-sized NEOs are responsible for Chelyabinsk-like events, our results seem to say that the average impact probability of a house-sized NEO is actually ten times greater than the average impact probability of a large NEO. That sounds strange, but it may be telling us something interesting about the dynamical history of NEOs."

Trilling speculates that the orbital distributions of large and small NEOs differ, with small NEOs concentrated in bands of collisional debris that are more likely to impact Earth. Bands of debris could be produced when larger NEOs fragment into swarms of smaller boulders. Testing this hypothesis is an interesting problem for the future.

Estimating the study's detection efficiency was critical to the result. Frank Valdes (NOAO), who developed the data reduction and analysis pipeline for the project, pointed out that "The best way to measure detection efficiency is by implanting synthetic NEOs into the data stream and then detecting the fake ones in the same way real NEOs are detected."

Well-matched to the study of small, faint NEOs, the large aperture of the 4-meter Blanco telescope and the wide field-of-view of DECam were also vital to the study. Describing the broad science reach of DECam, Allen remarked, "DECam has the power to revolutionize many fields of astronomy, from our understanding of dark matter and dark energy, to the search for distant planets in our Solar System and our understanding of the near-Earth environment."

Explore further: Dead comets and near-earth encounters

More information: "The size distribution of Near Earth Objects larger than 10 meters," Trilling et al. 2017, Astronomical Journal, in press. Preprint:

Related Stories

Dead comets and near-earth encounters

October 13, 2015

Near Earth Objects (NEOs) are asteroids or comets whose orbits sometimes bring them close to the Earth, thereby posing a potentially threat. The asteroid that struck Chelyabinsk last year was an NEO about 40 meters in diameter. ...

Near Earth Objects

November 25, 2016

Near Earth Objects (NEOs) are small solar system bodies whose orbits sometimes bring them close to the Earth, thereby posing a potential threat. Because NEOs are constantly being replenished from the solar system, they are ...

NASA's new asteroid alert system gives five days of warning

November 3, 2016

Everyone knows it was a large asteroid striking Earth that led to the demise of the dinosaurs. But how many near misses were there? Modern humans have been around for about 225,000 years, so we must have come close to death ...

The properties of a six-meter near-Earth object

June 27, 2014

( —Near Earth Objects (NEOs) are asteroids (or comets) whose orbits sometimes bring them close to the earth's orbit. Thus they could potentially collide with the Earth, giving them considerably more parochial interest ...

Recommended for you

HESS J1943+213 is an extreme blazar, study finds

June 21, 2018

An international group of astronomers have carried out multi-wavelength observations of HESS J1943+213 and found evidence supporting the hypothesis that this gamma-ray source is an extreme blazar. The finding is reported ...

'Red nuggets' are galactic gold for astronomers

June 21, 2018

About a decade ago, astronomers discovered a population of small, but massive galaxies called "red nuggets." A new study using NASA's Chandra X-ray Observatory indicates that black holes have squelched star formation in these ...

The Rosetta stone of active galactic nuclei deciphered

June 21, 2018

A galaxy with at least one active supermassive black hole – named OJ 287 – has caused many irritations and questions in the past. The emitted radiation of this object spans a wide range – from the radio up to the highest ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 01, 2017
Very nice article! It illustrates the fact that assumptions like "there is no correlation between X and Y" (i.e., between size and impact risk) must always be justified and tested.
One thing: You refer to the Chelyabinsk impactor as a "meteoroid". That is technically incorrect. Meteoroids are defined to be objects smaller than about 1 meter. The Chelyabinsk impactor (and all the objects discussed in the paper) are small asteroids, not meteoroids.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.