Looking for signs of the first stars

March 14, 2017, Kavli Institute for the Physics and Mathematics of the Universe
Credit: Kavli Institute for the Physics and Mathematics of the Universe

It may soon be possible to detect the universe's first stars by looking for the blue colour they emit on explosion.

The universe was dark and filled with hydrogen and helium for 100 million years following the Big Bang. Then, the first stars appeared, and metals were created by thermonuclear fusion reactions within stars.

These metals were spread around the galaxies by exploding stars or 'supernovae'. Studying first-generation supernovae, which are more than 13 billion years old, provides a glimpse into what the universe might have looked like when the first stars, galaxies and formed. But to-date, it has been difficult to distinguish a first-generation supernova from a later one.

New research, led by Alexey Tolstov from the Kavli Institute for the Physics and Mathematics of the Universe, has identified characteristic differences between these supernovae types after experimenting with supernovae models based on observations of extremely metal-poor stars.

Similar to all supernovae, the luminosity of metal-poor supernovae shows a characteristic rise to a peak brightness followed by a decline. The phenomenon starts when a star explodes with a bright flash, caused by a shock wave emerging from its surface after its core collapses. This is followed by a long 'plateau' phase of almost constant luminosity lasting several months, followed by a slow exponential decay.

The team calculated the light curves of metal-poor blue versus metal-rich red supergiant stars. The shock wave and plateau phases are shorter, bluer and fainter in metal-poor . The team concluded that the colour blue could be used as an indicator of a first-generation supernova. In the near future, new, large telescopes, such as the James Webb Space Telescope scheduled to be launched in 2018, will be able to detect the first explosions of and may be able to identify them using this method.

Credit: Kavli IPMU

Explore further: Blue is an indicator of first star's supernova explosions

Provided by: Kavli Institute for the Physics and Mathematics of the Universe


Related Stories

Blue is an indicator of first star's supernova explosions

July 12, 2016

An international collaboration led by the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) have discovered that the color of supernovae during a specific phase could be an indicator for detecting ...

Distant super-luminous supernovae found

November 1, 2012

(Phys.org)—Two 'super-luminous' supernovae - stellar explosions 10 to 100 times brighter than other supernova types - have been detected in the distant Universe.

Supernova ignition surprises scientists

May 20, 2015

Scientists have captured the early death throes of supernovae for the first time and found that the universe's benchmark explosions are much more varied than expected.

Recommended for you

Magnetized inflow accreting to center of Milky Way galaxy

August 17, 2018

Are magnetic fields an important guiding force for gas accreting to a supermassive black hole (SMBH) like the one that our Milky Way galaxy hosts? The role of magnetic fields in gas accretion is little understood, and trying ...

First science with ALMA's highest-frequency capabilities

August 17, 2018

The ALMA telescope in Chile has transformed how we see the universe, showing us otherwise invisible parts of the cosmos. This array of incredibly precise antennas studies a comparatively high-frequency sliver of radio light: ...

Another way for stellar-mass black holes to grow larger

August 17, 2018

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some ...

Six things about Opportunity's recovery efforts

August 17, 2018

NASA's Opportunity rover has been silent since June 10, when a planet-encircling dust storm cut off solar power for the nearly-15-year-old rover. Now that scientists think the global dust storm is "decaying"—meaning more ...

Sprawling galaxy cluster found hiding in plain sight

August 16, 2018

MIT scientists have uncovered a sprawling new galaxy cluster hiding in plain sight. The cluster, which sits a mere 2.4 billion light years from Earth, is made up of hundreds of individual galaxies and surrounds an extremely ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.