Researchers launch plasmons with controlled amounts of angular momentum

March 17, 2017 by Bob Yirka report
Schematic experimental methodology. Credit: (c) Science (2017). DOI: 10.1126/science.aaj1699

(Phys.org)—A team of researchers with members from institutions in Germany and Israel has developed a way to launch plasmons with controlled amounts of angular momentum using spiral-like structures fashioned into a smooth layer of gold plate. In their paper published in the journal Science, the group describes their technique and why they believe it could one day provide the basis for a new type of storage device.

Prior work had shown that it was possible to use orbital of as a way to store data in the air (because of their different phase advances—each could be used to represent an individual character), which in practical use would be optical fibers. In this new effort, the researchers have found a way to do much the same thing, only on a chip, which allows for it to be confined, making it much easier to port to an actual application.

To accomplish this feat, the researchers turned to plasmonics, which are oscillations in quantum particles or quasiparticles. In this case, it was the oscillation of electrons that occurs when photons strike a metal surface. The idea, the researchers noted, was that allow for confining light, which meant that it was possible to make its wavelength conform to a . They found they were able to kick off plasmon waves with angular momentum by etching spirals into a gold plate—that allowed for monitoring its motion using an electron microscope.

Using it, they were able to see that firing photons at the spiral in the plates caused electrons to be ejected, which was an indirect way to "see" plasmons, which were controlled by the angular momentum of photons. This meant it was possible to use the initial wave advances to represent characters within the confines of a computer chip. That day is still a long way off, of course— the work was more a proof of concept than a finished product. But if a way can be found to mass produce chips using the technique, end users could see a huge increase in the amount of data storage. The work also suggests, the team notes, that it might be possible to do some things with light that have never been possible before.

Explore further: New theory to explain why sun's surface rotates slower than its core

More information: G. Spektor et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices, Science (2017). DOI: 10.1126/science.aaj1699

Abstract
The ability of light to carry and deliver orbital angular momentum (OAM) in the form of optical vortices has attracted much interest. The physical properties of light with a helical wavefront can be confined onto two-dimensional surfaces with subwavelength dimensions in the form of plasmonic vortices, opening avenues for thus far unknown light-matter interactions. Because of their extreme rotational velocity, the ultrafast dynamics of such vortices remained unexplored. Here we show the detailed spatiotemporal evolution of nanovortices using time-resolved two-photon photoemission electron microscopy. We observe both long- and short-range plasmonic vortices confined to deep subwavelength dimensions on the scale of 100 nanometers with nanometer spatial resolution and subfemtosecond time-step resolution. Finally, by measuring the angular velocity of the vortex, we directly extract the OAM magnitude of light.

Related Stories

Photons do the twist, and scientists can now measure it

September 26, 2016

Researchers in the University of Minnesota's College of Science and Engineering have measured the twisting force, or torque, generated by light on a silicon chip. Their work holds promise for applications such as miniaturized ...

Leiden physicists entangle four rotating photons

February 3, 2016

For the first time, scientists have entangled four photons in their orbital angular momentum. Leiden physicists sent a laser through a crystal, thereby creating four photons with coupled 'rotation'. So far this has only been ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Osiris1
not rated yet Mar 19, 2017
Moore's Law still at work

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.