New synchrotron powder diffraction facility for long running experiments

February 15, 2017, International Union of Crystallography
Key components are on the large granite table. Credit: Claire A. Murray et al

Synchrotron beamlines and their instruments are built to harness the photon beam power of synchrotron radiation (SR), which has special properties - ideally suited to providing detailed and accurate structural information that is difficult to obtain from conventional sources. The common modus operandi for such facilities is that users are allocated a short duration of beamtime, typically a few hours to a few days, in which to perform their experiments.

With technological advances in instrumentation, detection, computing power, automation and remote access, SR facilities are developing new modes of access, designed to increase speed, efficiency and throughput of user experiments, such as on the macromolecular beamlines at Stanford Synchrotron Radiation Light Source in the US and at the Diamond Light Source in the UK.

However, there are a class of experiments that are increasingly excluded by these developments, which nevertheless could greatly benefit from the application of SR. For example, some materials undergo very slow transforming reactions, while others take time to exhibit the effects of curing, ageing or repeated use. These processes can be subtle or take weeks to months or even years to either show gross manifestation or run to completion.

At present off-line processing with before and after SR measurements is the norm, but valuable structural information on growth, change and intermediate phases can be missed or indeed lost. There is therefore a clear need for a facility that allows slow processes to be studied.

In a recently published paper scientists report on a new purpose built LDE facility, which has been designed to address the needs of a wide and diverse range of scientific investigations. The new facility takes the form of an additional specially constructed end-station to the existing ultra-high-resolution and time-resolved powder diffraction beamline (I11) at Diamond. The new end-station is dedicated to hosting up to 20 long-term experiments (weeks to years), all running in parallel.

To demonstrate the effectiveness of this new facility, commissioning results from two contrasting science cases are presented. In the first, the slow in situ precipitation of the hydrated magnesium sulfate mineral meridianiite from an aqueous solution was followed. The hydrated phase is believed to be widespread on the surface of Mars and was formed inside a specifically designed low-temperature cell. In the second study, the long term stability of the metal-organic framework material NOTT-300 was investigated. This is a potential supramolecular material for greenhouse gas capture. Initial results show that the facility is capable of detecting phase evolution and detailed structural changes and is well suited for many applied systems and functional materials of interest. The emergence of new science from ongoing experiments is expected soon.

Explore further: Improving catalysis science with synchrotrons

More information: Claire A. Murray et al, New synchrotron powder diffraction facility for long-duration experiments, Journal of Applied Crystallography (2017). DOI: 10.1107/S1600576716019750

Related Stories

Improving catalysis science with synchrotrons

November 23, 2016

Catalysts, the materials that drive the reactions at the heart of refineries, manufacturing plants, and many other industrial processes, are critical to the global economy and have been the subject of research for decades. ...

New beamline at MAX II opens for research

May 24, 2011

Using the new beamline, 911-4, at MAX-lab in Lund, Sweden, researchers can study a wide range of different types of material with a resolution of a few nanometres. This could be useful for both basic research and industry ...

Exploiting high speed light for super slow science

February 14, 2016

Scientists at the world's premier science conference - the American Association for the Advancement of Science (AAAS) annual meeting - will this year be discussing the advances enabled by the UK's pioneering Long-Duration ...

First Research Projects Underway at Diamond

February 6, 2007

This week marks the dawn of a new era of scientific endeavour as Diamond Light Source, the UK’s brand new synchrotron facility, opens its doors for business and welcomes its very first scientific users.

Recommended for you

New insights into magnetic quantum effects in solids

January 23, 2019

Using a new computational method, an international collaboration has succeeded for the first time in systematically investigating magnetic quantum effects in the well-known 3-D pyrochlore Heisenberg model. The surprising ...

Rapid and continuous 3-D printing with light

January 22, 2019

Three-dimensional (3-D) printing, also known as additive manufacturing (AM), can transform a material layer by layer to build an object of interest. 3-D printing is not a new concept, since stereolithography printers have ...

Scientists discover new quantum spin liquid

January 22, 2019

An international research team led by the University of Liverpool and McMaster University has made a significant breakthrough in the search for new states of matter.

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.