VLT to search for planets in Alpha Centauri system

January 9, 2017
The foreground of this image shows ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The rich stellar backdrop to the picture includes the bright star Alpha Centauri, the closest stellar system to Earth. In late 2016 ESO signed an agreement with the Breakthrough Initiatives to adapt the VLT instrumentation to conduct a search for planets in the Alpha Centauri system. Such planets could be the targets for an eventual launch of miniature space probes by the Breakthrough Starshot Initiative. Credit: Y. Beletsky (LCO)/ESO

ESO has signed an agreement with the Breakthrough Initiatives to adapt the Very Large Telescope instrumentation in Chile to conduct a search for planets in the nearby star system Alpha Centauri. Such planets could be the targets for an eventual launch of miniature space probes by the Breakthrough Starshot initiative.

ESO, represented by the Director General, Tim de Zeeuw, has signed an agreement with the Breakthrough Initiatives, represented by Pete Worden, Chairman of the Breakthrough Prize Foundation and Executive Director of the Breakthrough Initiatives. The agreement provides funds for the VISIR (VLT Imager and Spectrometer for mid-Infrared) instrument, mounted at ESO's Very Large Telescope (VLT) to be modified in order to greatly enhance its ability to search for potentially habitable planets around Alpha Centauri, the closest stellar system to the Earth. The agreement also provides for telescope time to allow a careful search programme to be conducted in 2019.

The discovery in 2016 of a planet, Proxima b, around Proxima Centauri, the third and faintest star of the Alpha Centauri system, adds even further impetus to this search.

Knowing where the nearest exoplanets are is of paramount interest for Breakthrough Starshot, the research and engineering programme launched in April 2016, which aims to demonstrate proof of concept for ultra-fast light-driven "nanocraft", laying the foundation for the first launch to Alpha Centauri within a generation.

Detecting a habitable planet is an enormous challenge due to the brightness of the planetary system's host star, which tends to overwhelm the relatively dim planets. One way to make this easier is to observe in the mid-infrared wavelength range, where the thermal glow from an orbiting planet greatly reduces the brightness gap between it and its host star. But even in the mid-infrared, the star remains millions of times brighter than the planets to be detected, which calls for a dedicated technique to reduce the blinding stellar light.

The existing mid-infrared instrument VISIR on the VLT will provide such performance if it were enhanced to greatly improve the image quality using adaptive optics, and adapted to employ a technique called coronagraphy to reduce the stellar light and thereby reveal the possible signal of potential terrestrial planets. Breakthrough Initiatives will pay for a large fraction of the necessary technologies and development costs for such an experiment, and ESO will provide the required observing capabilities and time.

The new hardware includes an instrument module contracted to Kampf Telescope Optics (KTO), Munich, which will host the wavefront sensor, and a novel detector calibration device. In addition, there are plans for a new coronagraph to be developed jointly by University of Liège (Belgium) and Uppsala University (Sweden).

Detecting and studying potentially habitable planets orbiting other stars will be one of the main scientific goals of the upcoming European Extremely Large Telescope (E-ELT. Although the increased size of the E-ELT will be essential to obtaining an image of a planet at larger distances in the Milky Way, the light collecting power of the VLT is just sufficient to image a planet around the nearest star, Alpha Centauri.

The developments for VISIR will also be beneficial for the future METIS instrument, to be mounted on the E-ELT, as the knowledge gained and proof of concept will be directly transferable. The huge size of the E-ELT should allow METIS to detect and study exoplanets the size of Mars orbiting Alpha Centauri, if they exist, as well as other potentially around other nearby stars.

Explore further: Image: Hubble's best image of Alpha Centauri A and B

Related Stories

Image: Hubble's best image of Alpha Centauri A and B

September 2, 2016

The closest star system to the Earth is the famous Alpha Centauri group. Located in the constellation of Centaurus (The Centaur), at a distance of 4.3 light-years, this system is made up of the binary formed by the stars ...

Earth-like planet around Proxima Centauri discovered

August 15, 2016

The hunt for exoplanets has been heating up in recent years. Since it began its mission in 2009, over four thousand exoplanet candidates have been discovered by the Kepler mission, several hundred of which have been confirmed ...

Recommended for you

Planetary waves, first found on Earth, are discovered on Sun

March 27, 2017

The same kind of large-scale planetary waves that meander through the atmosphere high above Earth's surface may also exist on the Sun, according to a new study led by a scientist at the National Center for Atmospheric Research ...

NASA spacecraft investigate clues in radiation belts

March 27, 2017

High above Earth, two giant rings of energetic particles trapped by the planet's magnetic field create a dynamic and harsh environment that holds many mysteries—and can affect spacecraft traveling around Earth. NASA's Van ...

Stars born in winds from supermassive black holes

March 27, 2017

Observations using ESO's Very Large Telescope have revealed stars forming within powerful outflows of material blasted out from supermassive black holes at the cores of galaxies. These are the first confirmed observations ...

Evidence of giant tsunami on Mars suggests an early ocean

March 27, 2017

(Phys.org)—A team of researchers with members from France, Italy and the U.S. has found what they believe is evidence of a giant tsunami occurring on Mars approximately 3 billion years ago due to an asteroid plunging into ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Jan 09, 2017
A sleeping invention by Dr. Robert L. Carroll (1910-1997) a mathematical physicist - could open space to human exploration far beyond present ideas. Carroll's Ultra-Cold Disruption (UCD) is a revolutionary alternative to any form of fission or fusion. The fuel is very small amounts of ordinary water. There is no radioactive waste. Carroll was aiming for the stars. His alternative to relativity proposed the maximum speed of a spacecraft is 20 million times that of light. If it proves practical, UCD could initially be used to generate power. Carroll believed it would be safe enough for vehicles. It might also replace chemical rockets with a system that cannot explode and would be much lighter and cheaper. AESOP Energy intends to prototype the breadbasket sized reactor. A possible early application is replacement of fuel in an 18 wheel truck. A nanoscale craft can be aimed at a star. If it quickly returns with data confirmed by the Hubble, imagine the implications and possibilities.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.