VLT to search for planets in Alpha Centauri system

January 9, 2017, ESO
The foreground of this image shows ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The rich stellar backdrop to the picture includes the bright star Alpha Centauri, the closest stellar system to Earth. In late 2016 ESO signed an agreement with the Breakthrough Initiatives to adapt the VLT instrumentation to conduct a search for planets in the Alpha Centauri system. Such planets could be the targets for an eventual launch of miniature space probes by the Breakthrough Starshot Initiative. Credit: Y. Beletsky (LCO)/ESO

ESO has signed an agreement with the Breakthrough Initiatives to adapt the Very Large Telescope instrumentation in Chile to conduct a search for planets in the nearby star system Alpha Centauri. Such planets could be the targets for an eventual launch of miniature space probes by the Breakthrough Starshot initiative.

ESO, represented by the Director General, Tim de Zeeuw, has signed an agreement with the Breakthrough Initiatives, represented by Pete Worden, Chairman of the Breakthrough Prize Foundation and Executive Director of the Breakthrough Initiatives. The agreement provides funds for the VISIR (VLT Imager and Spectrometer for mid-Infrared) instrument, mounted at ESO's Very Large Telescope (VLT) to be modified in order to greatly enhance its ability to search for potentially habitable planets around Alpha Centauri, the closest stellar system to the Earth. The agreement also provides for telescope time to allow a careful search programme to be conducted in 2019.

The discovery in 2016 of a planet, Proxima b, around Proxima Centauri, the third and faintest star of the Alpha Centauri system, adds even further impetus to this search.

Knowing where the nearest exoplanets are is of paramount interest for Breakthrough Starshot, the research and engineering programme launched in April 2016, which aims to demonstrate proof of concept for ultra-fast light-driven "nanocraft", laying the foundation for the first launch to Alpha Centauri within a generation.

Detecting a habitable planet is an enormous challenge due to the brightness of the planetary system's host star, which tends to overwhelm the relatively dim planets. One way to make this easier is to observe in the mid-infrared wavelength range, where the thermal glow from an orbiting planet greatly reduces the brightness gap between it and its host star. But even in the mid-infrared, the star remains millions of times brighter than the planets to be detected, which calls for a dedicated technique to reduce the blinding stellar light.

The existing mid-infrared instrument VISIR on the VLT will provide such performance if it were enhanced to greatly improve the image quality using adaptive optics, and adapted to employ a technique called coronagraphy to reduce the stellar light and thereby reveal the possible signal of potential terrestrial planets. Breakthrough Initiatives will pay for a large fraction of the necessary technologies and development costs for such an experiment, and ESO will provide the required observing capabilities and time.

The new hardware includes an instrument module contracted to Kampf Telescope Optics (KTO), Munich, which will host the wavefront sensor, and a novel detector calibration device. In addition, there are plans for a new coronagraph to be developed jointly by University of Liège (Belgium) and Uppsala University (Sweden).

Detecting and studying potentially habitable planets orbiting other stars will be one of the main scientific goals of the upcoming European Extremely Large Telescope (E-ELT. Although the increased size of the E-ELT will be essential to obtaining an image of a planet at larger distances in the Milky Way, the light collecting power of the VLT is just sufficient to image a planet around the nearest star, Alpha Centauri.

The developments for VISIR will also be beneficial for the future METIS instrument, to be mounted on the E-ELT, as the knowledge gained and proof of concept will be directly transferable. The huge size of the E-ELT should allow METIS to detect and study exoplanets the size of Mars orbiting Alpha Centauri, if they exist, as well as other potentially around other nearby stars.

Explore further: Image: Hubble's best image of Alpha Centauri A and B

Related Stories

Image: Hubble's best image of Alpha Centauri A and B

September 2, 2016

The closest star system to the Earth is the famous Alpha Centauri group. Located in the constellation of Centaurus (The Centaur), at a distance of 4.3 light-years, this system is made up of the binary formed by the stars ...

Earth-like planet around Proxima Centauri discovered

August 15, 2016

The hunt for exoplanets has been heating up in recent years. Since it began its mission in 2009, over four thousand exoplanet candidates have been discovered by the Kepler mission, several hundred of which have been confirmed ...

Recommended for you

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

Race at the edge of the sun: Ions are faster than atoms

March 26, 2019

Scientists at the University of Göttingen, the Institut d'Astrophysique in Paris and the Istituto Ricerche Solari Locarno have observed that ions move faster than atoms in the gas streams of a solar prominence. The results ...

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Mark_Goldes
1 / 5 (1) Jan 09, 2017
A sleeping invention by Dr. Robert L. Carroll (1910-1997) a mathematical physicist - could open space to human exploration far beyond present ideas. Carroll's Ultra-Cold Disruption (UCD) is a revolutionary alternative to any form of fission or fusion. The fuel is very small amounts of ordinary water. There is no radioactive waste. Carroll was aiming for the stars. His alternative to relativity proposed the maximum speed of a spacecraft is 20 million times that of light. If it proves practical, UCD could initially be used to generate power. Carroll believed it would be safe enough for vehicles. It might also replace chemical rockets with a system that cannot explode and would be much lighter and cheaper. AESOP Energy intends to prototype the breadbasket sized reactor. A possible early application is replacement of fuel in an 18 wheel truck. A nanoscale craft can be aimed at a star. If it quickly returns with data confirmed by the Hubble, imagine the implications and possibilities.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.