Faint dwarf galaxies in Fornax shed light on a cosmological mystery

November 24, 2015, National Optical Astronomy Observatory
Image of the inner 3 square degrees of the NGFS survey footprint compared with the size of the Moon. Low surface brightness dwarf galaxies are marked by red circles. Gray circles indicate previously known dwarf galaxies. The dwarf galaxies, which vastly outnumber the bright galaxies, may be the “missing satellites” predicted by cosmological simulations.

An astonishing number of faint low surface brightness dwarf galaxies recently discovered in the Fornax cluster of galaxies may help to solve the long-standing cosmological mystery of "The Missing Satellites". The discovery, made by an international team of astronomers led by Roberto Muñoz and Thomas Puzia of Pontificia Universidad Católica de Chile, was carried out using the Dark Energy Camera (DECam) on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory (CTIO). CTIO is operated by the National Optical Astronomy Observatory (NOAO).

Computer simulations of the evolution of the matter distribution in the Universe predict that should vastly outnumber galaxies like the Milky Way, with hundreds of low mass dwarf galaxies predicted for every Milky Way-like galaxy. The apparent shortage of dwarf galaxies relative to these predictions, "the missing satellites problem," could imply that the cosmological simulations are wrong or that the predicted dwarf galaxies have simply not yet been discovered. The discovery of numerous faint dwarf galaxies in Fornax suggests that the "missing satellites" are now being found.

The discovery, recently published in the Astrophysical Journal, comes as one of the first results from the Next Generation Fornax Survey (NGFS), a study of the central 30 square degree region of the Fornax galaxy using optical imaging with DECam and near-infrared imaging with ESO's VISTA/VIRCam. The Fornax cluster, located at a distance of 62 million light-years, is the second richest galaxy cluster within 100 million light-years after the much richer Virgo cluster.

The deep, high-quality images of the Fornax cluster core obtained with DECam were critical to the recovery of the missing dwarf galaxies. "With the combination of DECam's huge field of view (3 square degrees) and our novel observing strategy and data reduction algorithms, we were able to detect extremely diffuse low-surface brightness galaxies," explained Roberto Muñoz, the lead author of the study.

Because the low surface brightness dwarf galaxies are extremely diffuse, stargazers residing in one of these galaxies would see a night sky very different from that seen from Earth. The stellar density of the faint dwarf galaxies (one star per million cubic parsecs) is about a million times lower than that in the neighborhood of the Sun, or almost a billion times lower than in the bulge of the Milky Way.

As a result, "inhabitants of worlds in one of our NGFS ultra-faint dwarfs would find their sky sparsely populated with visible objects and extremely boring. They would perhaps not even realize that they live in a galaxy!" mused coauthor Thomas Puzia.

The large number of dwarf discovered in the Fornax cluster echoes the emerging census of satellites of our own Galaxy, the Milky Way. More than 20 dwarf galaxy companions have been discovered in the past year, many of which were also discovered with DECam.

Explore further: Astronomers discover low surface brightness galaxies with amateur telescopes

More information: Roberto P. Muñoz et al. Unveiling a rich system of faint dwarf galaxies in the next generation Fornax survey, The Astrophysical Journal (2015). DOI: 10.1088/2041-8205/813/1/L15

Related Stories

A shy galactic neighbor

September 16, 2015

The Sculptor Dwarf Galaxy, pictured in this new image from the Wide Field Imager camera, installed on the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory, is a close neighbour of our galaxy, the Milky Way. Despite ...

A dark matter bridge in our cosmic neighborhood

July 14, 2015

By using the best available data to monitor galactic traffic in our neighborhood, Noam Libeskind from the Leibniz Institute for Astrophysics Potsdam (AIP) and his collaborators have built a detailed map of how nearby galaxies ...

Dark Energy Survey finds more celestial neighbors

August 17, 2015

Scientists on the Dark Energy Survey, using one of the world's most powerful digital cameras, have discovered eight more faint celestial objects hovering near our Milky Way galaxy. Signs indicate that they, like the objects ...

Hubble explores the mysteries of UGC 8201

March 19, 2015

The galaxy UGC 8201, captured here by the NASA/ESA Hubble Space Telescope, is a dwarf irregular galaxy, so called because of its small size and chaotic structure. It lies just under 15 million light-years away from us in ...

New dwarf galaxies discovered in orbit around the Milky Way

March 10, 2015

A team of astronomers from the University of Cambridge have identified nine new dwarf satellites orbiting the Milky Way, the largest number ever discovered at once. The findings, from newly-released imaging data taken from ...

Recommended for you

How to drive a robot on Mars

November 12, 2018

Some 78 million miles (126 million kilometers) from Earth, alone on the immense and frigid Red Planet, a robot the size of a small 4x4 wakes up just after sunrise. And just as it has every day for the past six years, it awaits ...

Aging a flock of stars in the Wild Duck Cluster

November 8, 2018

Do star clusters harbor many generations of stars or just one? Scientists have long searched for an answer and, thanks to the University of Arizona's MMT telescope, found one in the Wild Duck Cluster, where stars spin at ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

GSwift7
5 / 5 (3) Nov 24, 2015
The idea of life in one of these dwarf galaxies is interesting. If life does exist around other stars (I personally think that it probably does), then a dwarf galaxy would be a nice safe place to live, with far less chance of being toasted by a nearby supernova or some other such galactic scale tragedy. That would, of course, be counterbalanced by the negative factor that heavy elements would be much more scarce due to the fact that second and third generation stars would take much longer to be generated. I don't have the statistics, but I would call it a safe guess that there are relatively few second or third generation stars in dwarf galaxies. Dwarf galaxies 'should' be made mostly of virgin hydrogen and helium that's never been part of anything before.

Well, I suppose there would be dwarf galaxies formed in the plumes of cosmic jets, but that's not a good place to live, and that wouldn't be a typical dwarf galaxy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.