Astronomers find new details about star formation in ancient galaxy protoclusters

April 21, 2015, Subaru Telescope
Figure 1: Psudo-color composite image of PKS 1138-262 region, derived from Hubble Space Telescope's ACS/WFC data archive (F814W and F475W). This region is one of the target protoclusters observed by MOIRCS on Subaru Telescope. Credit: NAOJ/HST

Ongoing studies of distant galaxy protoclusters using the Multi-Object Infrared Camera and Spectrograph (MOIRCS) instrument on the Subaru Telescope is giving astronomers a closer look at the characteristics of star-forming regions in galaxies in the early universe.

A team of astronomers from the National Astronomical Observatory of Japan (NAOJ) and SOKENDAI (Graduate University of Advanced Studies, Japan) are tracking velocity structures and gaseous metallicities in in two protoclusters located in the direction of the constellation Serpens. These appear around the PKS 1138-262 (at a redshift of 2.2, Figure 1) and USS 1558-003 (at a redshift of 2.5). The clusters appear as they would have looked 11 billion years ago, and the team concluded that they are in the process of cluster formation that has led to present-day .

The MOIRCS near-infrared spectrograph is very effective for studies focused on the distant, early universe because strong emission lines from star-forming galaxies are redshifted from the optical to the near-infrared regime. This gives astronomers unique insights into these activities.

Based on the MOIRCS data, the team estimated that both protoclusters have a weight of about 10^14 solar masses (Figure 2). These follow the typical mass growth history of the today's most massive clusters, such as the 'Coma Cluster.' That makes the two protoclusters ideal laboratories for exploring early phasesof in a unique clustered environment.

The of the gases in the protocluster galaxies was studied using multiple spectral lines emitted from them. The result shows their gaseous metallicities are chemically enriched compared with those of galaxies in the general fields (Figure 3). Metals (elements heavier than hydrogen and helium) are created in the interiors of stars as they evolve and then released into surrounding gas through supernova explosions or stellar winds (often referred to as chemical evolution; Figure 4a).

The difference in gaseous metallicity between protoclusters and general fields suggests that star-formation histories and/or gas inflow/outflow processes should be different in the protocluster regions. The result also suggests that galaxy formation has already been influenced by environmental conditions in the era that star-formation activities are the most active across the universe. This would be an early phase of strong environmental effects seen in the present galaxy clusters.

Figure 2: Mass-growth history expected of massive cluster of galaxies that have about 10^15 solar masses present day. Red spots are from this study. Black and grayer are for other massive cluster of galaxies, studied by the author's team and other research teams, respectively. Credit: NAOJ

In order to explain the metallicity excess in the protoclusters, the team members focused attention on the environmental effects of inflow and outflow mechanism on the galaxy formation process. Recent works report that inflow and outflow activities were most significant eleven billion years ago (at redshift ~2), and were about a hundred times more active relative to those in the local universe.

Clusters of galaxies are large self-gravitating systems in which galaxies and ionized gas are bound by massive amounts of dark matter. In such unique, dense environments, galaxies move at a speed of about 1000 kilometers per second. Due to this high speed, the galaxies are exposed to high pressure from intercluster medium. As a result, the outer regions with relatively poor metallicity are stripped. It is like the strong air resistance of air a bicycle rider experiences. In this case, the gaseous metallicities become higher because the chemical enrichment process takes place mainly in metal-rich central regions (Figure 4b). Another possibility is that the surrounding high-pressure, inter-cluster medium prevents outflowing gas from escaping from the galaxies (Figure 4c). This also results in higher gaseous metallicities of the .

Figure 3: Plot of stellar mass of the galaxies versus metallicity of gas in them. Gray and pale blue curves are for the present-day (nearby) galaxies and field galaxies at 11 billion years ago, respectively. Red is the current study about the proto-cluster of galaxies. The galaxies in the proto-clusters clearly show higher metallicity compared with the ones in the general fields at about the same time of the history in the universe. Credit: NAOJ

The research team concludes that the metallicity excess in the protocluster regions results from unique phenomena occurring in the cluster environment. The PI of this research, Mr. Rhythm Shimakawa of NAOJ and SOKENDAI, is determined to continue studying the detailed physical properties of individual forming galaxies in the protoclusters to find clear evidence that proves this hypothesis.

Figure 4: Illustrations of the metal enrichment processes (chemical evolution) in the field galaxies and the proto-cluster galaxies. Left (figure 4a) is for the galaxies in the general fields while the middle and the right (figures 4b and 4c, respectively) show their model that explain the unique enrichment processes of the heavy elements in the galaxies in the proto-clusters. Credit: NAOJ

Explore further: A crash course in galactic clusters and star formation

More information: "Identification of the progenitors of rich clusters and member galaxies in rapid formation at z>2." arXiv:1402.3568.

"An early phase of environmental effects on galaxy properties unveiled by near-infrared spectroscopy of protocluster galaxies at z>2." arXiv:1406.5219.

Related Stories

A crash course in galactic clusters and star formation

October 15, 2014

Clusters of galaxies have back-stories worthy of a Hollywood blockbuster: their existences are marked by violence, death and birth, arising after extragalactic pile-ups where groups of galaxies crashed into each other.

The answer is blowing in the intergalactic wind

November 13, 2014

Astronomers from the University of Toronto and the University of Arizona have provided the first direct evidence that an intergalactic "wind" is stripping galaxies of star-forming gas as they fall into clusters of galaxies. ...

Measuring galaxy evolution with globular clusters

March 23, 2015

Globular clusters are gravitationally bound ensembles of stars, as many as a million stars in some cases, grouped in roughly spherical clusters with diameters as small as only tens of light-years. Globular clusters are typically ...

Our Sun came late to the Milky Way's star-birth party

April 9, 2015

In one of the most comprehensive multi-observatory galaxy surveys yet, astronomers find that galaxies like our Milky Way underwent a stellar "baby boom," churning out stars at a prodigious rate, about 30 times faster than ...

Recommended for you

Periodic radio signal detected from the blazar J1043+2408

December 12, 2018

Using Owens Valley Radio Observatory (OVRO), astronomers have detected a periodic signal in the radio light curve of the blazar J1043+2408, which could be helpful in improving our understanding about the nature of blazars ...

Rosetta witnesses birth of baby bow shock around comet

December 12, 2018

A new study reveals that, contrary to first impressions, Rosetta did detect signs of an infant bow shock at the comet it explored for two years – the first ever seen forming anywhere in the solar system.

The epoch of planet formation, times twenty

December 12, 2018

Astronomers have cataloged nearly 4,000 exoplanets in orbit around distant stars. Though the discovery of these newfound worlds has taught us much, there is still a great deal we do not know about the birth of planets and ...

Juno mission halfway to Jupiter science

December 12, 2018

On Dec. 21, at 8:49:48 a.m. PST (11:49:48 a.m. EST) NASA's Juno spacecraft will be 3,140 miles (5,053 kilometers) above Jupiter's cloud tops and hurtling by at a healthy clip of 128,802 mph (207,287 kilometers per hour). ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Apr 21, 2015

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.