Researchers develop an optical system that enhances visualization in opaque environments such as skin

July 22, 2014
The popular image of the cat Cheshyre from Alice in Wonderland appears blurred the background by action of frosted glass. The proposed method can recover the original image with high fidelity.

A team of scientists led by researcher Jesus Lancis, at the Institute of New Imaging Technologies in the Universitat Jaume I, in collaboration with lecturer Pedro Andrés, at the Department of Optics in the University of Valencia, has proposed a new mechanism that allows viewing through turbid media. Study results have been published recently and have aroused great interest in the scientific community for their potential applications in biomedicine, specifically to display internal biological tissue layers.

Optical image techniques are quickly becoming essential tools in the biomedical sciences, as they are not invasive; they are quick and inexpensive and pose no health risks because they do not use ionizing radiation. However, one of the biggest challenges they face is to capture sharp images of deep layers of because of the high diffusion that light suffers when passing through.

Research conducted jointly by the Institute of New Imaging Technologies at the Universitat Jaume I in Castelló and the Department of Optics in the University of Valencia is a significant step in overcoming the fundamental limitations inherent in the propagation of light through turbid media that enables to transmit images to distances clearly superior to the length of termination.

For this purpose, the team of Valencian researchers led by Jesús Lancis used a micromirror array, identical to that used by commercial video projectors, to project a set of microstructured light patterns that overlap sequentially on the sample Then, the total energy transmitted to each one of them via a simple photodetector, which detects the amount of transmitted light, is measured. Finally, a signal processing technique recently introduced, called "compressive sampling", enables them to reconstruct the image.

Pedro Andrés notes that "one of the most surprising aspects of this research is that the result is achieved using a single-pixel detector, i.e., without spatial resolution, when precisely the current trend is to use matrix sensors consisting of tens of megapixels". It is also remarkable to note that the technique may operate through dynamic turbid media.

Most of the diffuser media of interest, such as biological tissue, are dynamic in the sense that the distribution centres continuously change their positions over time. This is generally an added difficulty for transmitting or receiving images. "Our technique, however, requires a calibration of the medium, and its fluctuations during the detection step does not limit the ability of imaging", states Enrique Tajahuerce, co-author of the work.

"Our ultimate goal is to break the barriers that limit the penetration depth of light into the interior of a turbid medium, either a living tissue, or a turbulent atmosphere", adds Lancis. To do this, they need to show that the technique works even when the sample is fully immersed in the tissue, as can be the case of a tumor or other kind of malformation.

This work, carried out completely in the Valencia Community, has been funded with different funds of the Spanish Plan of R&D from the Ministry of Science and Innovation and with financial support from the Valencian Regional Government through the Prometheus programme.

Research has drawn the attention of the editors of the journals of the Optical Society of America (OSA) and the American Association of Physics (APS), who have jointly prepared a story for broadcast media. The article in which the above results have been recently published in the journal Optics Express, which is an open-access journal of the OSA, can be found at "Image transmission through dynamic scattering media by single-pixel photodetection".

Explore further: Overcoming light scattering: Single-pixel optical system uses compressive sensing to see deeper inside tissue

More information: Enrique Tajahuerce, Vicente Durán, Pere Clemente, Esther Irles, Fernando Soldevila, Pedro Andrés, and Jesús Lancis. "Image transmission through dynamic scattering media by single-pixel photodetection." Optics Express Vol. 22, No. 14 DOI: 10.1364/OE.22.016945

Related Stories

Absorption straightens the drunken stagger of light

July 1, 2014

( —In a study partly funded by the FOM Foundation, physicists from the University of Twente and Yale University have discovered that light travelling through an opaque material follows a straighter path, if the ...

Single-pixel 'multiplex' captures elusive terahertz images

June 29, 2014

A novel metamaterial enables a fast, efficient and high-fidelity terahertz radiation imaging system capable of manipulating the stubborn electromagnetic waves, advancing a technology with potential applications in medical ...

Walls are mirrors with new imaging technique

July 16, 2012

( -- A child's dream wanting to come true: putting on a magic cape to see around corners and through walls, solving mysteries and catching criminals. Scientists, meanwhile, are achieving the same optical powers with ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.