'Shuttle' technology reveals mineral formations

April 14, 2014 by Stan Wilson, Science Network WA
As the sonde is taken up from the bottom of the drill hole it logs the data of the surrounding rock formations. Credit: Anna Petts

Technology developed in Australia is allowing drillers to detect rock formations deep in the earth and simultaneously survey the borehole—all during the drilling process.

Drillers are then able to upload the data instantaneously to business centres for analysis. This is all done without traditionally used and expensive wire-line crews.

The technology developed by Deep Exploration Technologies Co-operative Research Centre (DET CRC) uses a shuttle or sonde and was jointly built, designed and tested by researchers at Curtin University and Perth-based company Globaltech.

Called the 'Pathfinder Multi Shot Autonomous Sonde' it records properties of rock formations whilst deep in the earth as well as measuring azimuth and dip of the borehole at regular intervals.

The sonde is pumped down through the drill to the bottom of a drill hole so that it protrudes beyond the drill bit. Then as the drill rods are removed, taking the sonde up too, it logs the data of the surrounding rock formations and the characteristics of the hole.

DET CRC Chief Executive Richard Hillis says this is a cost effective way of retrieving real-time data on deep in the earth.

"This may also permit the use of drilling techniques that are only half the cost of conventional diamond drilling," he says.

During a test at the DET CRC's Brukunga Drilling Research and Training Facility the sonde successfully recorded the natural gamma radiation in a test hole indicating that it could differentiate between rock types.

The sonde is capable of being loaded with a suite of sensors and could replace the need for drill core, saving time and analysis costs.

Current drilling technology relies on core samples being sent to laboratories for analysis, which can mean delays of weeks or months, plus the cores are destroyed in the assay process. If more data is needed, drilling crews are sent back out to the site.

Globaltech project leader Gordon Stewart says crews can deploy the sonde on site.

"[Meaning] the real time information can be obtained before the drill hole collapses. Also the expense of sending separate wireline crews to run sensors down the hole can be eliminated," he says.

The sonde is also self-powered and autonomous which means there are no power or communication wires to break—a recurring issue with traditional wireline logging tools.

This technology comes at a time when Australia's resource and mining industry is facing rising costs coupled with declining mineral prices.

The sonde is currently being field tested in north Western Australia.

Explore further: Preparatory drill test performed on Mars

Related Stories

Preparatory drill test performed on Mars

February 7, 2013

(Phys.org)—The drill on NASA's Mars rover Curiosity used both percussion and rotation to bore about 0.8 inch (2 centimeters) into a rock on Mars and generate cuttings for evaluation in advance of the rover's first sample-collection ...

'Electronic ears' to guide mining drills

April 29, 2008

CSIRO scientists with the Minerals Down Under National Research Flagship have successfully used an electronic listening post to track and control a drill operating more than 300 metres below the Earth’s surface.

Recommended for you

New study brings Antarctic ice loss into sharper focus

February 21, 2018

A NASA study based on an innovative technique for crunching torrents of satellite data provides the clearest picture yet of changes in Antarctic ice flow into the ocean. The findings confirm accelerating ice losses from the ...

'Chameleon' ocean bacteria can shift their colors

February 21, 2018

Cyanobacteria - which propel the ocean engine and help sustain marine life - can shift their colour like chameleons to match different coloured light across the world's seas, according to research by an international collaboration ...

Stable gas hydrates can trigger landslides

February 21, 2018

Like avalanches onshore,many processes cause submarine landslides. One very widespread assumption is that they are associated with dissociating gas hydrates in the seafloor. However, scientists at GEOMAR Helmholtz Centre ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.