Making the mega-band: Exploring how black holes become supermassive

June 5, 2013

(Phys.org) —Rock stars live fast, die young and end their days self-destructively. University of Alberta postdoctoral fellow Jeanette Gladstone says, surprisingly, some stars live the same way.

While most live long and happy lives, just like our Sun, before dying quietly to become a white dwarf, a few others take on the rock star persona. These stars burn through their fuel rapidly, dying in a huge explosion that results in a black hole. The problem is most black holes are incredibly difficult to see because their extreme gravitational pull attracts anything that strays too close, even light! Yet with the right partner, this strong gravity can also lead to these rock stars' comebacks, allowing us to observe them long after their death. If a star strays too close, it can be slowly torn apart and eaten by the black hole.

These stellar mass black holes weigh between 3 and 100 times the mass of our Sun, but they are just garage bands compared to space's equivalent to Muse and the Rolling Stones. that live in the centers of galaxies can weigh hundreds of thousands to billions of times the . Gladstone says it remains a mystery how these rock stars made it so big. Supermassive black holes could have begun as indie bands that rocketed to stardom with a brand new #1 hit. To do this, the black holes would have to gorge excessively, at rates that require . We might also expect to see some black holes that are intermediate in mass between stellar-mass and supermassive black holes in our , like a band that is consistently releasing albums, but never making it truly big.

Gladstone, the Avadh Bhatia Fellow in the Department of Physics at the University of Alberta, spoke on May 30, 2013, at the annual meeting for Canadian astronomers to present her survey of the nearest bizarre black holes that are either rapidly gorging or intermediate in mass, and discuss how mega-band black holes make it big.

Explore further: Black holes growing faster than expected

Related Stories

Black holes growing faster than expected

January 16, 2013

(Phys.org)—Astronomers from Swinburne University of Technology have discovered how supermassive black holes grow - and it's not what was expected.

The origin of the s-star cluster at the galactic center

June 5, 2013

(Phys.org) —Scientists Fabio Antonini, of the Canadian Institute for Theoretical Astrophysics, and David Merritt, of the Rochester Institute of Technology, have developed a new theory that explains the orbits of the massive ...

Recommended for you

New quasar discovered by astronomers

September 19, 2017

(Phys.org)—A team of astronomers led by Jacob M. Robertson of the Austin Peay State University in Clarksville, Tennessee has detected a new quasi-stellar object (QSO). They found the new quasar, designated SDSS J022155.26-064916.6, ...

The cosmic water trail uncovered by Herschel

September 19, 2017

During almost four years of observing the cosmos, the Herschel Space Observatory traced out the presence of water. With its unprecedented sensitivity and spectral resolution at key wavelengths, Herschel revealed this crucial ...

What do we need to know to mine an asteroid?

September 19, 2017

The mining of resources contained in asteroids, for use as propellant, building materials or in life-support systems, has the potential to revolutionise exploration of our Solar System. To make this concept a reality, we ...

A day in the life of NASA's Voyagers

September 19, 2017

At more than 10 billion miles away from Earth, there is no day and night. Time and space are fathomless and our Sun is a distant point of starlight—a faint reminder of the home NASA's twin Voyagers, humanity's farthest ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.