Euclid and the geometry of the dark universe

June 22, 2012 By Jenny Winder, Universe Today

Euclid, an exciting new mission to map the geometry, distribution and evolution of dark energy and dark matter has just been formally adopted by ESA as part of their Cosmic Vision 2015-2025 progamme. Named after Euclid of Alexandria, the “Father of Geometry”, it will accurately measure the accelerated expansion of the Universe, bringing together one of the largest collaborations of astronomers, engineers and scientists in an attempt to answer one of the most important questions in cosmology: why is the expansion of the Universe accelerating, instead of slowing down due to the gravitational attraction of all the matter it contains?

In 2007 the Hubble Space Telescope produced a 3D map of dark matter that covered just over 2 square degrees of sky, while in March this year the Baryon Oscillation Spectroscopic Survey (BOSS) measured the precise distance to just over a quarter of a million galaxies. Working in the visible and near-infrared wavelengths, Euclid will precisely measure around two billion galaxies and galaxy clusters in 3 dimensions in a wide extragalactic survey covering 15,000 square degrees (over a third of the sky) plus a deep survey out to redshifts of ~2, covering an area of 40 square degrees, the 3-D galaxy maps produced will trace ’s influence over 10 billion years of cosmic history, covering the period when dark energy accelerated the expansion of the Universe.

The mission was selected last October but now that it has been formally adopted by ESA, invitations to tender will be released, with Astrium and Thales Alenia Space, Europe’s two main space companies expected to bid. Hoping to launch in 2020, Euclid will involve contributions from 11 European space agencies as well as NASA while nearly 1,000 scientists from 100 institutes form the Euclid Consortium building the instruments and participating in the scientific harvest of the mission. It is expected to cost around 800m euros ($1,000m £640m) to build, equip, launch and operate over its nominal 6 year mission lifetime, where it will orbit the second Sun-Earth Lagrange point (L2 in the image below) It will have a mass of around 2100 kg, and measure about 4.5 metres tall by 3.1 metres. It will carry a 1.2 m Korsch telescope, a near infrared camera/spectrometer and one of the largest optical digital cameras ever flown in space.

Dark matter represents 20% of the universe and dark energy 76%. Euclid will use two techniques to map the dark matter and measure dark energy. Weak gravitational lensing measures the distortions of light from distant galaxies due to the mass of , this requires extremely high image quality to suppress or calibrate-out image distortions in order to measure the true distortions by gravity. Euclid’s camera will produce images 100 times larger than those produced by Hubble, minimizing the need to stitch images together. Baryonic acoustic oscillations, wiggle patterns, imprinted in the clustering of galaxies, will provide a standard ruler to measure dark energy and the expansion in the Universe. This involves the determination of the redshifts of galaxies to better than 0.1%. It is also hoped that later in the mission, supernovas may be used as markers to measure the expansion rate of the Universe.

Explore further: Euclid mission gets go-ahead to probe Universe's darkest secrets

Related Stories

'Dark energy' targeted in European space mission

October 4, 2011

So-called dark energy, believed to play a role in the accelerated expansion of the Universe, will be studied in a major science mission to be launched later this decade, the European Space Agency (ESA) said on Tuesday.

Hubble survey carries out a dark matter census

October 13, 2011

( -- The NASA/ESA Hubble Space Telescope has been used to make an image of galaxy cluster MACS J1206.2-0847. The apparently distorted shapes of distant galaxies in the background is caused by an invisible substance ...

Light from galaxy clusters confirms theory of relativity

September 28, 2011

All observations in astronomy are based on light emitted from stars and galaxies and, according to the general theory of relativity, the light will be affected by gravity. At the same time all interpretations in astronomy ...

Galaxy Evolution Explorer finds dark energy repulsive

May 20, 2011

( -- A five-year survey of 200,000 galaxies, stretching back seven billion years in cosmic time, has led to one of the best independent confirmations that dark energy is driving our universe apart at accelerating ...

Recommended for you

Solar eruptions could electrify Martian moons

October 18, 2017

Powerful solar eruptions could electrically charge areas of the Martian moon Phobos to hundreds of volts, presenting a complex electrical environment that could possibly affect sensitive electronics carried by future robotic ...

Potential human habitat located on the moon

October 18, 2017

A study published in Geophysical Research Letters confirms the existence of a large open lava tube in the Marius Hills region of the moon, which could be used to protect astronauts from hazardous conditions on the surface.


Adjust slider to filter visible comments by rank

Display comments: newest first

2 / 5 (4) Jun 23, 2012
Sub: Limiting functional objectives
The perception of the present day trend in search of Dark mode concepts-Both Dark matter and Dark Energy-is under question?
Change in concepts with an open-end approach helps to understand atleast the milky way- Plasma Regulated Electromagnetic phenomena in Magnetic field environment.
Further dependence on the Milky-way and dimensional Comprehension have been highlighted in a report sent to ESA Euclid group
2.6 / 5 (5) Jun 23, 2012
Word salad.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.