Physicists develop first conclusive test to better understand high-energy particles correlations

March 26, 2012, Springer

Researchers have devised a proposal for the first conclusive experimental test of a phenomenon known as "Bell’s nonlocality." This test is designed to reveal correlations that are stronger than any classical correlations, and do so between high-energy particles that do not consist of ordinary matter and light. These results are relevant to the so-called ‘CP violation’ principle, which is used to explain the dominance of matter over antimatter. These findings by Beatrix Hiesmayr, a theoretical physicist at the University of Vienna, and her colleagues, a team of quantum information theory specialists, particle physicists and nuclear physicists, have been published in the European Physical Journal C.

According to the famous Einstein-Podolsky-Rosen Gedanken-Experiment, two particles that are measured independently obey the principle of locality, implying that an external influence on the first particle, such as measurement, has no direct influence on the second – in other words there is no “spooky action at distance,” as Einstein would have described it. In an experimental setup, however, measurement results for one particle revealed a correlated measurement result for the other particle. Initially, these correlations could only be explained by referring to hidden parameters. In 1964, John Bell found that so-called local realistic hidden parameter theories imply that the relations between these correlations could be experimentally tested through so-called Bell tests. Since then many experiments have proven that local, realistic hidden parameters cannot be used as an explanation for these correlations.

In this study, the authors have succeeded in devising a new Bell test, taking into account the decay property of high-energy particles systems, called kaon-antikaon systems. This procedure ensures that the test is conclusive – a goal that has never before been achieved – and simultaneously guarantees its experimental testability. Experimental testing requires equipment such as the KLOE detector at the accelerator facility DAPHNE in Italy.

Revealing “spooky action at distance” for kaon-antikaon pairs has fundamental implications for our understanding of such particles’ correlations and could ultimately allow us to determine whether symmetries in particle physics and manifestations of particles correlations are linked.

Explore further: 'Spooky action at distance' in particle physics?

More information: Hiesmayr B. C., Di Domenico A., Curceanu C., Gabriel A., Huber M., Larsson J.-Å., Moskal P. (2011). Revealing Bell’s Nonlocality for Unstable Systems in High Energy Physics, European Physical Journal C (EPJ C) 72: 1856 DOI: 10.1140/epjc/s10052-012-1856-X

Related Stories

'Spooky action at distance' in particle physics?

January 16, 2012

Researchers have devised a proposal for the first conclusive experimental test of a phenomenon known as ‘Bell’s nonlocality.’ This test is designed to reveal correlations that are stronger than any classical ...

Debunking and closing quantum entanglement 'loopholes'

November 15, 2010

(PhysOrg.com) -- An international team of physicists, including a scientist based at The University of Queensland, has recently closed an additional 'loophole' in a test explaining one of science's strangest phenomena -- ...

Physicists close two loopholes while violating local realism

November 30, 2010

(PhysOrg.com) -- The latest test in quantum mechanics provides even stronger support than before for the view that nature violates local realism and is thus in contradiction with a classical worldview. By performing an experiment ...

Recommended for you

X-rays reveal chirality in swirling electric vortices

January 16, 2018

Scientists used spiraling X-rays at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) to observe, for the first time, a property that gives handedness to swirling electric patterns – dubbed ...

Slow 'hot electrons' could improve solar cell efficiency

January 16, 2018

Photons with energy higher than the band gap of the semiconductor absorbing them give rise to what are known as hot electrons. The extra energy in respect to the band gap is lost very fast, as it is converted into heat and ...

Quan­tum physics turned into tan­gi­ble re­al­ity

January 16, 2018

ETH physicists have developed a silicon wafer that behaves like a topological insulator when stimulated using ultrasound. They have thereby succeeded in turning an abstract theoretical concept into a macroscopic product.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.