A quantum leap in computing

January 4, 2012
The the D-Wave One 128 qubit "Rainer" processor will be used by researchers in USC Dornsife and USC Viterbi to help advance the understanding of quantum computing. Photo by Ziva Santop/Steve Cohn Photography.

When American physicist Richard Feynman in 1982 proposed creating a quantum computer that could solve complex problems, the idea was merely a theory scientists believed was far off in the future.

A few decades later, USC Dornsife researchers are closing in on harnessing , a system that takes advantage of computational quirks such as . In the past, quantum decoherence had hindered researchers’ attempts to construct a durable quantum computer because the process interferes with quantum properties and renders the system no better than a classical computer. Once a deterrent, decoherence has become an obstacle that can be overcome using quantum tricks developed by USC researchers.

USC scientists can now vet their theories on the world’s first commercially available operational quantum computer.

In October, USC founded the USC-Lockheed Martin Center, which houses the D-Wave One, worth about $10 million and owned by Lockheed Martin. USC and Lockheed Martin will work together to explore the potential of the groundbreaking technology. The center and the adiabatic quantum computer that uses quantum annealing to solve optimization problems operating on a 128 qubit chip-set are located on the USC Information Sciences Institute campus in Marina del Rey, Calif.

“We have been strong in quantum computing for years but this development really is a ‘quantum leap’ for us,” said Daniel Lidar, a professor of chemistry in USC Dornsife with a joint appointment in USC Viterbi School of Engineering, who serves as the center’s scientific and technical director, and who initiated the efforts culminating in the arrival of the D-Wave One.

“We believe the ‘Rainier’ processor can pave the way toward solving some interesting algorithm issues such as optimization problems — problems such as machine learning automatic image recognition, and software validation.”

Lidar is separately leading a team conducting research with the support of a $6.25 million Department of Defense Multidisciplinary Research Initiative (MURI) grant issued to five academic institutions under USC leadership. The USC award is part of a $151 million MURI program involving 27 institutions.

“The D-Wave chip is not uncontroversial: many researchers in the community are skeptical regarding its quantum powers,” Lidar said. “An important aspect of the USC research effort will be to settle this controversy.”

Stephan Haas and Paolo Zanardi of USC Dornsife, USC Viterbi faculty members and researchers on the Marina del Rey campus, along with scholars from several universities are working with Lidar.

The center’s findings could lead to designs for superfast computers.

“This center is very big for the quantum information community,” said Zanardi, professor of physics in USC Dornsife and a newly elected fellow of the American Physical Society. “Rather than just writing our theories on the board we can finally check them on a real concrete system.” 

Fifteen USC Dornsife and USC Viterbi researchers, along with USC graduates and postdoctoral students are collaborating through the center, trying to better understand the perplexing questions of quantum systems. The group is part of the USC Center for Quantum Information and Science and Technology (CQIST), which serves as the umbrella organization for quantum computing at USC.

Unlike a classical computer, which encodes either a one or a zero using traditional bits, quantum computers rely on qubits, a unit of quantum information associated with the quantum properties of a physical atom. Quantum mechanics can encode the one and zero digits simultaneously — greatly speeding up the system. This property known as superposition — coupled with the quantum states ability to “tunnel” through energy barriers — allows the computer to perform optimization calculations far faster than classical computers. By taking advantage of these properties, a quantum computer in theory could process every possible answer at the same time rather than one at a time.

Researchers will utilize the D-Wave processor to develop methods to construct new quantum optimization algorithms, study the fundamental physics of entanglement and lead experiments in adiabatic quantum computing.

They will also focus on managing decoherence. The same ingredient that drives quantum computers to operate at fast speeds can also be a troublesome stumbling block that kicks quantum particles off superposition, knocking the quantum system back down to that of a classical computer. Envision the quantum system as a point in space and you want the point to follow a precise trajectory. Simple enough except the quantum system’s continuous interaction with the environment randomly kicks the points around and off the trajectory. The key is to protect quantum information and control decoherence.

“In order to allow us to outperform classical information processing devices, quantum components have to be very stable,” Zanardi said. “It turns out this quantum weirdness is the extra ingredient that gives us computational speedups, compared to classical algorithms that are very fragile.”

The development of optimization algorithms can help detect bugs in computer programs. In addition, optimization has the power to find a needle in a haystack, said Haas, professor of physics and astronomy, and vice dean for research in USC Dornsife.

“A model has countless solutions but only one of these is optimal,” Haas said. “The optimal solution can be one in a billion. If you have a classical computer it would take forever to find the optimal solution.  With a quantum computer the search is very much accelerated.”

Haas and Tameem Albash, a postdoctoral research associate in the department of physics in USC Dornsife, are addressing how to control a quantum computing system — or manipulating the inputs to a system to obtain the desired effect on the system’s output. By manipulating the magnetic field surrounding the device, the researchers are attempting to find the lowest-energy state of a specific quantum mechanical system, or the ground state property of a specific problem of interest.

“This chip gives us a new opportunity to flex our theoretical muscles,” Albash said. “The most interesting aspect of the chip is using it to solve problems we have never been able to answer.”

USC researchers are studying the various challenges associated with constructing a quantum computer, so it can be more easily built in the future. The new center paves the way for scholars to advance knowledge in a potentially revolutionary field.

“This technology is going to be a great testing ground for our theories and will enable us to develop our theories in new directions,” Zanardi said. “I expect great things out of the processor. We are all excited.”

Explore further: Breakthrough in quantum computing: Resisting 'quantum bug'

Related Stories

Scientists create first 3-D map of human genome

January 4, 2012

(PhysOrg.com) -- For the first time, scientists have developed a method for generating accurate three-dimensional models of the entire DNA strand of a cell, known as a genome.

Racial identity is changing among Latinos

December 26, 2011

(PhysOrg.com) -- In a paper published in Social Science Research, USC Dornsife’s Amon Emeka and Jody Agius Vallejo look at why many people with Latin American ancestry are not identifying themselves as Hispanic on U.S. ...

D-Wave sells first commercial quantum computer

June 1, 2011

(PhysOrg.com) -- Last week, Burnaby, British Columbia-based company D-Wave Systems, Inc., announced that it sold its first commercial quantum computer. Global security company Lockheed Martin, based in Bethesda, Maryland, ...

12-qubits reached in quantum information quest

May 8, 2006

In the drive to understand and harness quantum effects as they relate to information processing, scientists in Waterloo and Massachusetts have benchmarked quantum control methods on a 12-Qubit system. Their research was performed ...

Recommended for you

Musk, Zuckerberg duel over artificial intelligence

July 25, 2017

Visionary entrepreneur Elon Musk and Facebook chief Mark Zuckerberg were trading jabs on social media over artificial intelligence this week in a debate that has turned personal between the two technology luminaries.

Adobe bidding Flash farewell in 2020

July 25, 2017

Adobe on Tuesday said its Flash software that served up video and online games for decades will be killed off over the next three years.

Microsoft Paint brushed aside

July 24, 2017

Microsoft on Monday announced the end of days for its pioneering Paint application as it focuses on software for 3-D drawing.

Hyperloop or hyperbole? Musk promises NY-DC run in 29 mins

July 21, 2017

US entrepreneur Elon Musk said Thursday he'd received tentative approval from the government to build a conceptual "hyperloop" system that would blast passenger pods down vacuum-sealed tubes from New York to Washington at ...


Adjust slider to filter visible comments by rank

Display comments: newest first

4.3 / 5 (6) Jan 04, 2012
excellent. University buy in is one of the keys to D-Wave's legitimacy. I look forward to the research papers that will be created with the use of this system.

These systems aren't good at most problems, but they are very good at a small (but important) set of problems.
Josh Brown
not rated yet Jan 05, 2012
yes another great leap in quantum computers
1 / 5 (1) Jan 05, 2012
Has a quantum computer like the one mentioned in this article ever been used to solve an NP-Complete problem? Or are we not that far with them yet?
not rated yet Jan 06, 2012
@Deathclock: I don't think so, but it has done some very tough optimization problems with a very high degree of certainty. Search for D-Wave on physorg, there are a number of articles that have a ton of very helpful comments in them.

There is a lot of controversy surrounding just how "quantum" these computers are, or just how useful. They are definitely not general purpose quantum computers, but they do seem to perform quantum annealing.
Jan 06, 2012
This comment has been removed by a moderator.
5 / 5 (1) Jan 07, 2012
@Deathclock: Quantum computers don't solve NP theoretically (except obviously nobody has proved P!=NP). They solve some problems that are "in between" P and NP.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.