Osteoblasts are bone idle without Frizzled-9

March 14, 2011
Compared to wild-type (left), a vertebra from a Fzd9-null mouse (right) shows reduced calcein staining (green), indicating a decreased rate of bone formation. Credit: Albers, J., et al. 2011. J. Cell Biol. doi:10.1083/jcb.201008012

New research shows that the Wnt receptor Frizzled-9 (Fzd9) promotes bone formation, providing a potential new target for the treatment of osteoporosis. The study appears online on March 14 in The Journal of Cell Biology .

Adult bones are maintained by a balance of bone-forming osteoblasts and bone-resorbing osteoclasts. Although Wnt signaling affects this balance in mice and humans, the Wnt receptors involved remain unknown. A team of researchers led by Thorsten Schinke found that the Wnt receptor Fzd9 was upregulated during osteoblast differentiation and that mice lacking Fzd9 had fragile bones due to low rates of .

Fzd9-null osteoblasts differentiated normally, but they failed to mineralize their extracellular matrix. The loss of Fzd9 disrupted a non-canonical branch of the Wnt signaling pathway, resulting in reduced levels of the transcription factor STAT1, which was, in turn, required for the expression of several interferon-regulated genes. One of these genes en-coded a ubiquitin-like molecule called Isg15. Though little is known about Isg15's function, restoring its expression in Fzd9-null osteoblasts boosted matrix mineralization, whereas mice lacking Isg15 had similar bone defects to Fzd9-knockout animals.

Mice lacking one copy of Fzd9 also had low , suggesting that insufficient Fzd9 may cause the reduced seen in Williams-Beuren syndrome patients, who have a hemizygous deletion of the chromosomal region that includes the FZD9 gene. Schinke now wants to investigate whether boosting Fzd9 expression has the opposite effect to Fzd9 depletion and can stimulate bone formation. If so, Fzd9 would be an attractive for treating a variety of bone-loss disorders.

Explore further: Bone-cell control of energy generation is regulated by the protein Atf4

More information: Albers, J., et al. 2011. J. Cell Biol. doi:10.1083/jcb.201008012

Related Stories

Controlling bone formation to prevent osteoporosis

September 27, 2010

Aging disrupts the balance between bone formation and bone destruction, resulting in osteoporosis, which is characterized by reduced bone mass and increased risk of fracture. Recent data have suggested that this imbalance ...

New function for the protein Bcl-xL: It prevents bone breakdown

September 14, 2009

In blood cells, the protein Bcl-xL has a well-characterized role in preventing cell death by a process known as apoptosis. However, its function(s) in osteoclasts, cells that slowly breakdown bone (a process known as resorption), ...

Recommended for you

Mammal long thought extinct in Australia resurfaces

December 15, 2017

A crest-tailed mulgara, a small carnivorous marsupial known only from fossilised bone fragments and presumed extinct in NSW for more than century, has been discovered in Sturt National Park north-west of Tibooburra.

Finding a lethal parasite's vulnerabilities

December 15, 2017

An estimated 100 million people around the world are infected with Strongyloides stercoralis, a parasitic nematode, yet it's likely that many don't know it. The infection can persist for years, usually only causing mild symptoms. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.