Researchers discover arctic blooms occurring earlier

Scripps oceanography researchers discover arctic blooms occurring earlier
Ice edge blooms often follow retreating ice, as shown here on July 5, 2007, south of Wrangel Island in the eastern Chukchi Sea. Satellite data captured by the NASA MODIS-Aqua sensor, processed by Mati Kahru. Credit: Scripps Institution of Oceanography, UC San Diego

Warming temperatures and melting ice in the Arctic may be behind a progressively earlier bloom of a crucial annual marine event, and the shift could hold consequences for the entire food chain and carbon cycling in the region.

Scientists at Scripps Institution of Oceanography at UC San Diego, along with colleagues in Portugal and Mexico, plotted the yearly spring bloom of phytoplankton—tiny plants at the base of the ocean food chain—in the Arctic Ocean and found the peak timing of the event has been progressing earlier each year for more than a decade. The researchers analyzed satellite data depicting ocean color and phytoplankton production to determine that the spring bloom has come up to 50 days earlier in some areas in that time span.

The earlier Arctic blooms have roughly occurred in areas where ice concentrations have dwindled and created gaps that make early blooms possible, say the researchers, who publish their findings in the March 9 edition of the journal Global Change Biology.

During the one- to two-week spring bloom, which occurs in warm as well as cold regions, a major influx of new organic carbon enters the marine ecosystem through a massive peak in phytoplankton photosynthesis, which converts carbon dioxide into organic matter as part of the global carbon cycle. Phytoplankton blooms stimulate production of zooplankton, microscopic marine animals, which become a food source for fish.

Mati Kahru, lead author of the study and a research oceanographer in the Integrative Oceanography Division at Scripps, said it's not clear if the consumers of phytoplankton are able to match the earlier blooms and avoid disruptions of their critical life-cycle stages such as egg hatching and larvae development.

Scripps oceanography researchers discover arctic blooms occurring earlier
Significant trends toward earlier phytoplankton blooms (blue) were detected in about 11 percent of the area of the Arctic Ocean closest to the North Pole, delayed blooms (red) were evident to the south. Credit: Scripps Institution of Oceanography, UC San Diego

"The spring bloom provides a major source of food for zooplankton, fish and bottom-dwelling animals," he said. "The advancement of the bloom time may have consequences for the Arctic ecosystem."

Such a match or mismatch in timing could explain much of the annual variability of fish stocks in the region.

"The trend towards earlier phytoplankton blooms can expand into other areas of the Ocean and impact the whole ," say the authors, who used satellite data from 1997-2010 to create their bloom maps.


Explore further

Volcano fuels massive phytoplankton bloom

Citation: Researchers discover arctic blooms occurring earlier (2011, March 2) retrieved 21 February 2020 from https://phys.org/news/2011-03-arctic-blooms-earlier.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments