Researchers examine human immune response to virus at the atomic level

July 15, 2010, Texas A&M AgriLife Communications

A team of biochemists has identified the molecular mechanism by which an immune response is triggered by the invading viruses, according to recent research.

The results could eventually lead to new therapies for many different kinds of viral infections, from the common cold to and , according to Dr. Pingwei Li, Texas A&M University's department of biochemistry and biophysics.

"This work provided insight into how our recognizes viral RNA at the ," Li said.

The results of the team's research were published on July 15 by Structure of Cell Press, said Li, who is one of a 10-member team, four of who are with Li's department.

In the last few years, Li's group studied an enzyme called "RIG-I" that senses the presence of foreign RNA and triggers an innate immune response.

Unlike an adaptive immune response, innate immune response gives immediate protection against infection. Adaptive immune responses are learned by the body -- or "taught" as with inoculation, Li said. But innate immunity is built right into the cell's genetic structure and is ready to respond whenever a pathogen invades the host.

The innate immune system can rapidly respond to an entirely novel virus or bacteriological threat, while the adaptive immune system has to go through a kind of learning process that may take weeks to be effective sometimes. Just as important, the adaptive immune system is coupled to innate immunity, Li said.

Because of this connection to immune response, learning exactly how RIG-I senses foreign viruses promises great rewards in treating a host of diseases, he said.

"It is a very exciting and hot topic among researchers these days," Li said. "A couple of labs were racing to figure out how RIG-I works, but our team was the first to show how RIG-I recognizes the terminal triophosphate of viral RNA. We determined the structure almost a year ago and the result was presented at the Keystone Symposium for Structural Biology early this year."

Viruses contain RNA, which are molecules similar to DNA in many ways but which play different roles. The RNA molecules from virus often have structures that do not exist in human RNA. RIG-I specifically targets these unique structures and launches an by triggering the secretion of interferon, Li said

Interferons are proteins produced and released by the infected cells to fight pathogens such as viruses or bacteria.

But exactly what was the mechanism by which RIG-I triggers the antiviral immune responses? Though there were some clues offered by previous research, it was not clear how it worked at the molecular level, Li said.

Researchers knew, for example, that the RIG-I enzyme specifically targets the structural unit called "5' triphosphate," which is unique to viral RNA. Furthermore, it was known what a particular part of the RIG-I binds to the viral RNA.

"This crucial part is its 'C-terminal domain,' a small RNA binding module capable of recognizing RNA from many different kinds of viruses," he said.

To examine the of viral RNA sensing by RIG-I, the team used human RIG-I C-terminal domain, and examined the binding action through several different techniques. First, they used gel-filtration chromatography to figure out what kind of RNA binds to RIG-I. Then, using surface plasmon resonance, a biosensor-based technonolgy, they examined how tightly RIG-I binds viral RNA and how fast it "gets on and gets off the enzyme," Li said.

Surface plasmon resonance uses a laser beam to detect molecular bindings, he said.

Next, the team used a sophisticated analytical tool called "X-ray crystallography" to determine the three-dimensional structure of RIG-I bound to viral RNA.

Much like CAT scan used in hospitals, X-ray crystallography uses an X-ray beam diffracted through a crystal to image the atomic structure of molecules.

"Using a series of X-ray diffraction patterns, a crystallographer produces a 3D image of a molecule," Li said. "The image shows how a protein looks and how it recognizes the other molecules such as proteins or RNA."

Li noted the structure and mechanisms described in the article concerned only a fragment of the RIG-I protein that is responsible for binding to viral RNA. The team is currently working to analyze the full-length protein to gain further insight into how RNA binding activates signaling by RIG-I.

Li received a $1.5 million grant from the National Institutes of Health early this year to continue the research on RIG-I, he said.

"The ultimate goal of this research is to understand how our immune system fights . Findings from this research will facilitate the development of novel antiviral and anticancer reagents and more effective vaccines."

Explore further: Team learns how cellular protein detects viruses and sparks immune response

Related Stories

Researchers discover Ebola's deadly secret

January 19, 2010

( -- Research at Iowa State University has led scientists to uncover how the deadly Zaire Ebola virus decoys cells and eventually kills them.

Scientists reveal key structure from ebola virus

December 8, 2009

Scientists at The Scripps Research Institute have determined the structure of a critical protein from the Ebola virus, which, though rare, is one of the deadliest viruses on the planet killing between 50 and 90 percent of ...

Cracking a virus protection shield

June 16, 2006

Ebola, measles and rabies are serious threats to public health in developing countries. Despite different symptoms all of the diseases are caused by the same class of viruses that unlike most other living beings carry their ...

Recommended for you

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

The early bits of life

January 18, 2018

How can life originate before DNA and genes? One possibility is that there are natural processes that lead to the organisation of simple physical objects such as small microcapsules that undergo rudimentary forms of interaction, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 15, 2010
This is incredibly cool.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.