Aussies and Kiwis forge a cosmic connection

May 26, 2010, CSIRO
Zooming in to the heart of galaxy Centaurus A, 14 million light-years away. This composite image shows the entire galaxy, as imaged by CSIRO radio telescopes; radio emission from a central part of the galaxy, imaged by a US radio telescope; and the innermost part of the galaxy, imaged by the new network of Australian and New Zealand radio telescopes. Image credit - Whole galaxy: I. Feain, T. Cornwell & R. Ekers (CSIRO/ATNF); ATCA northern middle lobe pointing courtesy R. Morganti (ASTRON); Parkes data courtesy N. Junkes (MPIfR). Inner radio lobes: NRAO / AUI / NSF. Core: S. Tingay (ICRAR) / ICRAR, CSIRO and AUT

Six radio telescopes across Australia and New Zealand have joined forces to act as one giant telescope, linking up over a distance of 5500 km for the first time.

The link-up was a collaboration between CSIRO's Astronomy and Space Science division, the International Centre for Research at Curtin University of Technology in Western Australia, and AUT University in New Zealand.

The linked telescope will make images ten times more detailed than those of the and has already been used to peer into the heart of a galaxy called Centaurus A.

Showing Australia and New Zealand can link telescopes this way strengthens the two countries' joint bid to host the international Square Kilometre Array (SKA) telescope.

"The SKA is a truly mega-sized science project with its global reach, scale and ambition, akin to the in Europe," said CSIRO SKA Director Dr Brian Boyle.

"This successful linking of antennas shows Australia and New Zealand's commitment to next-generation astronomical research and how seriously we are taking the SKA bid."

The giant $2.5 billion SKA will have several thousand antennas, up to 5500 km apart, working together as one telescope.

Fifty times more sensitive than today's , the SKA will scan the cosmos for , star formation and magnetic fields in space.

Australia and New Zealand are one of two regions shortlisted to host the SKA. The other is Southern Africa. A decision is expected in 2012.

The newcomers to the Australasian telescope team are the New Zealand dish, near Warkworth in the hills of the North Island, and a new CSIRO dish in Western Australia's red dirt country, inland from Geraldton.

The new CSIRO dish is the first antenna of the Australian SKA Pathfinder radio telescope.

The Warkworth dish is operated by AUT and is the first functioning research-quality radio telescope in New Zealand.

Data from New Zealand radio telescope were transferred from Warkworth directly to Australia using recently established 1 Gb per second connectivity via the Kiwi Advanced Research and Education Network (KAREN).

"The linking of the Warkworth antenna is a milestone for New Zealand science," said the Director of the Institute for Radio Astronomy and Space Research at AUT, Professor Sergei Gulyaev.

"It shows that Australia and New Zealand can achieve the SKA's ambitious science goals."

The other telescopes used in the link-up were three CSIRO facilities in New South Wales and a University of Tasmania dish near Hobart, Tasmania.

One of the linked telescope's first projects has been to study the heart of a galaxy called Centaurus A.

Lurking there is a black hole that shoots out jets of radio-emitting particles at close to the speed of light.

Observing for the galaxy for 10 hours, the telescopes took enough data to fill a stack of DVDs in their cases as high as a nine-storey building.

The International Centre for Radio Astronomy Research at Curtin University of Technology provided the equipment for recording the data and also analysed the data to make an image.

The resolution of the new image is 100,000 times higher than that of a ground-breaking radio image made by CSIRO last year, which is itself the most detailed image ever made of the whole galaxy.

"Centaurus A is 14 million light-years away," said Curtin University's Professor Steven Tingay, a radio astronomy expert. "We're zooming in on the black hole at the heart of this galaxy, to learn about how these systems work.

"Making the new image has been like photographing a pin head from 20 km away."

Explore further: Australia, South Africa, short-listed for giant telescope

Related Stories

Astronomers reveal a 'blue whale of space'

July 7, 2009

CSIRO astronomers have revealed the hidden face of an enormous galaxy called Centaurus A, which emits a radio glow covering an area 200 times bigger than the full Moon.

First signal received by future telescope

March 3, 2010

An historic milestone was reached recently in Australia's bid to host the Square Kilometre Array telescope - a future international radio telescope that will be the world's largest and most sensitive.

Honey, I shrunk the receiver

March 17, 2010

( -- CSIRO and Australian company Sapphicon Semiconductor Pty Ltd have signed an agreement to jointly develop a complete radio receiver on a chip measuring just 5 mm x 5 mm that could eventually be used in mobile ...

Recommended for you

Solar-powered rover approaching 5,000th Martian dawn

February 16, 2018

The sun will rise on NASA's solar-powered Mars rover Opportunity for the 5,000th time on Saturday, sending rays of energy to a golf-cart-size robotic field geologist that continues to provide revelations about the Red Planet.

Supermassive black holes are outgrowing their galaxies

February 15, 2018

The growth of the biggest black holes in the Universe is outrunning the rate of formation of stars in the galaxies they inhabit, according to two new studies using data from NASA's Chandra X-ray Observatory and other telescopes ...

Hubble sees Neptune's mysterious shrinking storm

February 15, 2018

Three billion miles away on the farthest known major planet in our solar system, an ominous, dark storm - once big enough to stretch across the Atlantic Ocean from Boston to Portugal - is shrinking out of existence as seen ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.