Particle collider: Black hole or crucial machine?

Particle collider: Black hole or crucial machine? (AP)
In this Feb. 29, 2008 file photo, the last element, weighing 100 tonnes, of the ATLAS (A Toroidal LHC ApparatuS) experiment is lowered into the cave at the European Organization for Nuclear Research CERN (Centre Europeen de Recherche Nucleaire) in Meyrin, near Geneva, Switzerland. When launched to great fanfare nearly a year ago, some feared the Large Hadron Collider would create a black hole that would destroy the world. The world's largest scientific machine, built at a cost of US dlrs 10 billion, has worked only nine days and has yet to smash an atom. The European Organization for Nuclear Research, known as CERN, said FridayAug. 7, 2009 it will restart the collider in November at half power under pressure from scientists eager to conduct experiments to unlock secrets of the universe. (AP Photo/Keystone, Martial Trezzini, FILE)

(AP) -- When launched to great fanfare nearly a year ago, some feared the Large Hadron Collider would create a black hole that would suck in the world. It turns out the Hadron may be the black hole.

The world's largest scientific machine has cost $10 billion, has worked only nine days and has yet to smash an atom. The unique equipment in a 17-mile (27-kilometer) circular tunnel with cathedral-sized detectors deep beneath the Swiss-French border has been assembled by specialists in many countries, with 8,970 physicists eagerly awaiting the startup.

But despite the expense, thousands of physicists around the world, many of whom hope to conduct experiments here, insist that it will work and that it is crucial to mankind's understanding of the universe.

The European Organization for Nuclear Research, known as CERN, said Friday it would restart the collider in November at half power under pressure from scientists eager to conduct experiments to unlock secrets of the universe.

But spokesman James Gillies told The Associated Press they would have to shut down yet again next year to finish repairs so that the Large Hadron Collider can operate at full energy of 7 trillion electron volts - seven times higher than any other machine in the world.

CERN has been working since late last year to repair the damage caused by a faulty electrical joint. The breakdown occurred nine days after the spectacular start up of the $10 billion machine last Sept. 10 when beams of were sent around the accelerator in opposite directions.

Fifty-three massive electrical magnets had to be cleaned and repaired after the failure. Tons of supercold spilled out of the system, and a sooty residue had to be cleared from the tubes that are meant to be pristine, holding a vacuum in which subatomic particles can whiz around the tunnel at near the at temperatures colder than outer space.

Michio Kaku, a physics professor at City University of New York who is an outspoken critic of waste in big science projects, defends the CERN collider as a crucial investment.

"The Europeans and the Americans are not throwing $10 billion down this gigantic tube for nothing," Kaku said. "We're exploring the very forefront of physics and cosmology with the because we want to have a window on creation, we want to recreate a tiny piece of Genesis to unlock some of the greatest secrets of the universe."

He said the biggest cause of the "bad accident" last year was "probably due to human error caused by rushing the project."

"But I view it as a temporary black eye. We'll get it up and running," Kaku said.

CERN expects repairs and additional safety systems to cost about 40 million Swiss francs ($37 million) over the course of several years, covered by the 20-nation organization's budget.

The collider emerged as the world's largest after the U.S. canceled the Superconducting Super Collider being built in Texas in 1993. Congress pulled the plug after costs soared, and questions were raised about the value of the science it could produce.

Some people have questioned the cost of the CERN project, but Gillies says all 20 of CERN's member nations have remained supportive and that four other countries - Cyprus, Israel, Serbia and Turkey - have asked to join. A fifth country - Slovenia - has expressed interest.

Japan, India, Russia and the U.S. are observer countries that have made sizable contributions to the CERN project.

Scientists have stressed that colliders always have startup problems and say that by running through this winter as planned CERN will be pretty close to schedule.

CERN is now aiming to restart the machine in November with beams of subatomic particles initially running at 3.5 trillion electron volts, or TeV. That's only half the level the machine was designed for, but it's still 3 1/2 times higher than the second most powerful accelerator, the Tevatron at Fermilab outside Chicago. During last year's brief startup phase, the CERN collider only operated at half the Fermilab level.

Even as the machine is being calibrated this winter, scientists will be able to conduct experiments, collecting data on the collisions of protons and lead ions in the accelerator.

They hope the higher energy will enable them to see particles so far undetected, such as the elusive Higgs boson, which in theory gives mass to other particles - and objects and creatures - in the universe.

Physicists have used smaller, room-temperature colliders for decades to study the atom. They once thought protons and neutrons were the smallest components of the atom's nucleus, but the colliders showed that they are made of quarks and gluons and that there are other forces and particles. And they still have other questions about antimatter, dark matter and particle mass they want to answer with CERN's new collider.

They hope the fragments that come off the collisions will show on a tiny scale what happened one-trillionth of a second after the so-called Big Bang, which many scientists theorize was the massive explosion that formed the universe. The theory holds that the universe was rapidly cooling at that stage and matter was changing quickly.

Some skeptics have expressed fears the high-energy collision of protons could imperil the Earth by creating micro - subatomic versions of collapsed stars whose gravity is so strong they can suck in planets and other stars.

CERN and leading physicists dismiss the fears and maintain the project is safe.

The collider's teething problems are typical of complicated accelerators, but it has been especially frustrating to physicists from around the world, who already have been waiting for years to conduct their experiments on the machine.

Gillies told the AP that CERN management decided at the beginning of the year that it would not try to repair all parts of the collider this year.

"Otherwise, we would never have had a beam before halfway through next year," he said.

Gillies said CERN experts have examined every one of the 1,600 superconducting magnets and each of the 10,000 electrical splices as well as copper protection to carry away any spillover current to prevent damage to the magnets if they heat up as happened Sept. 19.

They decided some of the splices need to be repaired before the collider goes to full power, but that they can operate safely up to 5 TeV without further repairs now.

That has been set as the highest energy for the collider before its next shutdown for maintenance, probably in November 2010. Then the further repairs will be made so that the energy level can be ramped up.

"We've measured some of the resistance in the copper and it's higher than it should be," said Gillies. "It's very small resistance but it's there."

CERN's director-general, Rolf Heuer, said the collider has been studied very carefully and is much better understood than a year ago.

"We can look forward with confidence and excitement to a good run through the winter and into next year," Heuer said.

©2009 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Explore further

Restart of Large Hadron Collider now November

Citation: Particle collider: Black hole or crucial machine? (2009, August 7) retrieved 19 September 2019 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

Aug 07, 2009
This comment has been removed by a moderator.

Aug 07, 2009
Another question is the matter of Higgs boson evidence as such. Scientists are believing, they suceede in Higgs boson confirmation by detection of products of its decay in the following scheme:


In addition, they believe, Higgs boson should manifest by Yukawa coupling to quark-antiquark pairs, which decays furtemore in the following mechanism.


Here's no other evidence, as the decay scheme is the very same both for top-quark, both for Higgs boson - in another words, another LHC experiments are useless with respect of Higgs boson finding, as such evidence was done already by confirmation of top-quark decay mechanism.

Aug 07, 2009
we want to recreate a tiny piece of Genesis to unlock some of the greatest secrets of the universe
AWT is based on dualities. The confirmation of supersymmetry on LHC is closely related to formation of strangelets, i.e. the formation of dense clusters of particles, stabilized not by their gravity, but surface tension. For example I consider formation of tetraneutron, pentaquark or dimuon events observed recently on Tevatron at Fermilab as a first sign of strangelet formation - it enables to propagate unstable particles at unsafe distance. The more close we're to Genesis, the more close we are to Apocalypse and here's no way, how to avoid this duality - we should delay LHC experiments, until we understand better, what we are expecting from it.

The LHC is an enormous waste of money, but perhaps most concerning is that there has still been no major concerns about angering the sub-quantum gnomes that run the universe! See the recent findings of QGT where the CMB is related directly to the gnome's extremely uniform song and all of modern physics is derived from the basic assumption of gnomes with silly/awesome hats are running the universe that mainstream science ignores!

Returning to reality, hopefully it doesn't a'splode now that they're being a little bit more cautious in the run-up to turning it on. :P

Aug 08, 2009
This comment has been removed by a moderator.

Aug 08, 2009
Instead of it, LHC just demonstrates incompetence of European research and science, which is unable to develop and organize things thoroughly. Now it's evident, LHC was never designed for its nominal power 7 TeV per beam.

Aug 10, 2009 should reevaluate your grasp on reality..
I'd expect, if someone will observe sparks on the surface of palladium electrode, someone else will come soon and he prove, these sparks are coming from atmospheric discharge or something similar, so they have nothing to do with cold fusion. At the case of Prins superconductivity on diamond we can expect the same critical approach...

Such confirmation or refusal never happened, though - so it's evident, scientists doesn't care about problem of practical importance for society, so that society isn't obliged to care about things, which are of practical importance for scientists (like salaries).

The more fundamental experiments, the more ignored are by mainstream on behalf of LHC megalomania. From physicists perspective such stance is logical: these experiments seemingly violate their beloved theories, so they tend to ignore them, despite they can change the world.

Whereas the lack of practical importance of Higgs boson is evident: even if LHC confirm Higgs boson, we couldn't compute mass of electron in better precision, then for example fifty years old Heim's theory enables already (scientists are ignoring it, just because it's better then their own theories in this point). And the computation of electron mass is of negligible practical importance with compare to cold fusion or superconductivity research. Are we so rich civilization, we can ignore the findings of practical importance on behalf of these apparently less practical ones?

Aug 18, 2009
Alexa can you link me to some detailed information about how I might go about building your supposed cold fusion reactor? Cause until I see or build it myself I'm going to remain extremely skeptical. If someone has demonstrated cold fusion working then it should be possible to get in touch with them and get the information, so I'd even settle for a name, email address, or phone number, but I certainly am not going to just take some random person on the internet's word for it...

Aug 19, 2009
Here are myriads of peer-reviewed publications about it on the web and prof. Arata organized public demonstration of cold fusion for open group of journalists before year. In Japan one university is named after him - so it shouldn't be problem for You to contact him...;-)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more