Scientists solve mystery of starlight's origins

April 8, 2009 By Sean Bettam

( -- Scientists from the University of Toronto and the University of British Columbia have helped unveil the birthplaces of ancient stars using a two-tonne telescope carried by a balloon the size of a 33-storey building.

After two years spent analyzing data from the Balloon-borne Large-Aperture Sub-millimeter Telescope (BLAST) project, an international group of astronomers and astrophysicists from Canada, the U.S. and the U.K. reveals today in the journal Nature that half of the starlight of the Universe comes from young, star-forming several billion away.

"While those familiar optical images of the night sky contain many fascinating and beautiful objects, they are missing half of the picture in describing the cosmic history of ," says UBC Astronomy Prof. Douglas Scott.

"Stars are born in clouds of gas and dust," says Barth Netterfield, a cosmologist in the Department of Astronomy & Astrophysics at U of T. "The dust absorbs the starlight, hiding the young stars from view. The brightest stars in the Universe are also the shortest lived and many never leave their stellar nursery. However, the warmed dust emits light at far-infrared and submillimetre wavelengths - invisible to the human eye, but visible to the sensitive thermo-detectors on BLAST."

"The history of star formation in the universe is written out in our data. It is beautiful. And it is just a taste of things to come," says UBC Prof. Mark Halpern, part of the UBC team that also includes post-doctoral fellows Ed Chapin and Gaelen Marsden.

In the 1990s, NASA's COBE satellite discovered a nearly uniform glow of submillimetre light, known as the Far Infrared Background. It had been expected that this radiation was coming from warmed dust enshrouding bright young stars, but the nature of the galaxies which contain the dust had remained a mystery.

The Nature study combines BLAST submillimetre observations at wavelengths around 0.3 mm - between infrared and microwave wavelengths - with data at much shorter infrared wavelengths from NASA's Spitzer Space Telescope to confirm that all of the Far Infrared Background comes from individual distant galaxies, answering a decade-old question of the radiation's origin.

In addition to leading the data analysis, the Canadian scientists also constructed much of the hardware that made BLAST a reality. The aluminum gondola was designed to protect the telescope, the onboard computers and data upon landing. The motorized pointing system controlled the 2,000 kilogram payload with its two-metre-in-diameter telescope - the largest of its kind - to one one-hundredth of a degree in precision. The complex electronics monitored and recorded nearly 1,000 sensors while the software - nearly 300,000 lines of code - controlled the payload during its long flight 39 kilometres above the Earth.

Flying the telescope above much of the atmosphere allowed the BLAST team to peer out into the distant Universe at wavelengths nearly unattainable from the ground, and uncover dust-enshrouded galaxies that hide about half of the starlight in the Universe.

"Over the last decade, submillimetre telescopes on the ground have produced several 'black and white' images no larger than the size of a fingernail at the end of your outstretched arm," says Chapin. "In a single 11-day flight BLAST has taken a huge leap forward, producing colour images the size of your hand."

BLAST has acted as a pathfinder for the SPIRE (Spectral and Photometric Imaging Receiver) instrument on the upcoming Herschel satellite, in which Canadians are also involved. Using the same detectors as SPIRE, BLAST has provided an invaluable first look at the submillimetre sky.

"BLAST has given us a new view of the Universe," says Netterfield, whose U of T colleagues on the project include department chair Peter G. Martin and graduate students Marco P. Viero, Donald V. Wiebe (now a post-doc at UBC) and Enzo Pascale (now a faculty member at Cardiff University). "The data we collected enable us to make discoveries in topics ranging from the formation of stars to the evolution of distant galaxies."

BLAST is also uniquely capable of studying the earliest stages of star formation locally, in the Milky Way Galaxy. The BLAST collaboration is also releasing a study, submitted to the Astrophysical Journal, of the largest survey to date of the earliest stages of star formation. This study documents the existence of a large population of cold clouds of gas and dust, many of which have cooled to less than -260 C. These cold cores, which exist for millions of years, are the birthplaces of stars.

"Over the last nine years, I've followed BLAST from Vancouver to Toronto, Philadelphia, New Mexico, Texas, northern Sweden and Antarctica, and it feels great for us to finally announce the results," says Marsden. "These results are a very big step forward in submillimetre astronomy."

"The world-leading scientific success of Canadian graduate students and post-docs working on BLAST has been very impressive and, speaking as an educator, very gratifying," says Halpern.

Source: University of British Columbia (news : web)

Explore further: Astronomers to Look to Distant Galaxies with Balloon-Borne Telescope

Related Stories

Rare 'Star-Making Machine' Found in Distant Universe

July 10, 2008

Astronomers have uncovered an extreme stellar machine -- a galaxy in the very remote universe pumping out stars at a surprising rate of up to 4,000 per year. In comparison, our own Milky Way galaxy turns out an average of ...

Cool spacedust survey goes into orbit

February 1, 2008

University of Nottingham astronomers will be studying icy cosmic dust millions of light years away — using the biggest space telescope ever built.

Astronomers Spot Brightest Galaxies in the Distant Universe

August 9, 2007

By combining the capabilities of several telescopes, astronomers have spotted extremely bright galaxies hiding in the distant, young universe. The newfound galaxies are intrinsically bright due to their large rate of star ...

Recommended for you

Solar eruptions could electrify Martian moons

October 18, 2017

Powerful solar eruptions could electrically charge areas of the Martian moon Phobos to hundreds of volts, presenting a complex electrical environment that could possibly affect sensitive electronics carried by future robotic ...

Potential human habitat located on the moon

October 18, 2017

A study published in Geophysical Research Letters confirms the existence of a large open lava tube in the Marius Hills region of the moon, which could be used to protect astronauts from hazardous conditions on the surface.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 09, 2009
Seems the server got %u2018blasted%u2019 today (Fri 4-9-09) as the first 8 papers are from or relating to the new BLAST results! My favorite was paper 4 entitled %u201CA bright submillimeter source in the Bullet Cluster (1E0657-56) field detected by BLAST%u201D : . Just more, useful information on this pivotal galaxy cluster to be assimilated into a coherent picture of this object. Great work by all involved.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.