Infrared Nanotube Films Offer Advantages for Solar Cells and More

March 11, 2009 By Lisa Zyga, feature
Researchers have found that nanotube films have very good infrared transmission that could improve the efficiency of infrared solar cells. Image credit: Royal Society of Chemistry.

( -- Researchers have already known that carbon nanotube thin films have mechanical and conductive advantages that could make them useful as electrodes in solar cells, solid state lighting, and electronic displays. However, studies so far have focused on how well nanotube films transmit light in the visible range, but have not explored the films’ infrared properties.

In a recent study, physicists Liangbing Hu, David Hecht, and George Grüner from the University of California, Los Angeles, have investigated the of single-walled that are optically transparent and electrically conductive. They found that the nanotube films have an outstanding ability for transmitting infrared waves. In experiments, nanotube electrodes and electrodes outperformed various other materials in several key categories, opening up a variety of infrared applications for the nanotube films.

“This is the first time that the infrared properties of conductive CNT films are fully studied through measurement and calculations,” Hu told

To fabricate the nanotube films, the scientists dispersed nanotubes in water with the help of a surfactant, and then sprayed the substance onto heated substrates to create films. When shining an on the nanotube films, the scientists found that the films maintained an average transmittance rate of more than 90% over a wide (450 nanometers - 20 micrometers).

Because of the nanotube films’ high infrared transmittance, the scientists explain that they would make poor candidates for blocking heat, but would be useful for applications that require heat dissipation. One prominent example is . Since a large portion of solar energy is above a wavelength of 1 micrometer (longer than optical wavelengths), transparent nanotube thin films could be used to capture excess heat in infrared solar cells, making the solar cells more efficient.

“One major application is the infrared solar cells, where transparent CNT films as well graphene films would allow the transmission of infrared energy to the active layer, which allows the fabrication of infrared solar cells,” Hu said.

Compared with other materials known to transmit infrared waves, the nanotube films have the lowest reflection rate (less than 10%) of those addressed in the study. This advantage means that nanotube films might not require an antireflective coating like the others. In addition, nanotube films have high cutoff wavelengths (they transmit longer infrared wavelengths) compared with the other materials. This property could make the films especially useful for applications in the far infrared range.

The films could also serve as electrodes for a variety of industrial and military applications, such as infrared imaging, sensing, and emission, as well as modulators for fiber communications. Hu added that, in the future, the researchers plan to investigate using the films for an infrared camera.

More information: Hu, Liangbing; Hecht, David S.; Grüner, George. “Infrared transparent carbon nanotube thin films.” Applied Physics Letters 94, 081103 (2009).

Copyright 2009
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Explore further: Will carbon nanotubes replace indium tin oxide?

Related Stories

Will carbon nanotubes replace indium tin oxide?

March 9, 2009

( -- Up until now, George Grüner tells, most of the studies regarding the properties - and uses - of carbon nanotubes have been restricted to the visible spectral range. “We, however, were interested ...

Nanotubes find niche in electric switches

March 10, 2009

New research from Rice University and the University of Oulu in Oulu, Finland, finds that carbon nanotubes could significantly improve the performance of electrical commutators that are common in electric motors and generators.

Graphene-based gadgets may be just years away

April 30, 2008

Researchers at The University of Manchester have produced tiny liquid crystal devices with electrodes made from graphene – an exciting development that could lead to computer and TV displays based on this technology.

Recommended for you

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

Scientists have a new way to gauge the growth of nanowires

March 19, 2018

In a new study, researchers from the U.S. Department of Energy's (DOE) Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than ...

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.

Zero field switching (ZFS) effect in a nanomagnetic device

March 16, 2018

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron ...

Imaging technique pulls plasmon data together

March 16, 2018

Rice University scientists have developed a novel technique to view a field of plasmonic nanoparticles simultaneously to learn how their differences change their reactivity.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.