Study Finds 'Pre-Existing Condition' Fueled Killer Cyclone

February 26, 2009
In early May 2008, Cyclone Nargis passed over Burma (Myanmar) after forming in the Bay of Bengal.

(PhysOrg.com) -- A "pre-existing condition" in the North Indian Ocean stoked the sudden intensification of last year's Tropical Cyclone Nargis just before its devastating landfall in Burma, according to a new NASA/university study. The cyclone became Burma's worst natural disaster ever and one of the deadliest cyclones of all time.

Scientists at the National Taiwan University, Taipei; and NASA's Jet Propulsion Laboratory, Pasadena, Calif., used data from satellite altimeters, measurements of ocean depth and temperature and an ocean model to analyze the ocean conditions present at the time of the catastrophic storm. Nargis intensified from a relatively weak category 1 storm to a category 4 monster during its final 24 hours before making landfall on May 2, 2008.

Lead author I-I Lin of National Taiwan University and her team found the ocean conditions Nargis encountered created the perfect recipe for disaster. Cyclones thrive on warm layers of ocean water that are at least 26 degrees Celsius (79 degrees Fahrenheit). As they traverse the ocean, they typically draw deep, cold water up to the ocean surface, a process that limits their ability to strengthen, and even weakens them as they evolve. However, Nargis passed over a pre-existing warm ocean feature in the Bay of Bengal where upper ocean warm waters extended deeper than normal, from 73 to 101 meters (240 to 331 feet).

"This abnormally thick, warm water layer, which formed about a month earlier, kept deeper, colder waters from being drawn to the surface, increasing the energy available to fuel Nargis' growth by 300 percent," said Lin. "Combined with other atmospheric conditions conducive to strengthening, this warm ocean feature allowed Nargis to reach speeds of 115 knots [213 kilometers, or 132 miles, per hour] at landfall. Had Nargis not encountered this warm ocean feature, it would likely not have had sufficient energy to intensify rapidly."

Nargis' rapid intensification occurred predominantly over warm ocean regions where sea surface temperatures ranged between 30 and 30.2 degrees Celsius (about 86 degrees Fahrenheit) and sea surface heights ranged from 6 to 20 centimeters (2.4 to 7.9 inches) above normal. Between May 1 and 2, 2008, the storm intensified from category 1 to category 4. When Nargis briefly passed outside the warm ocean region on May 2, it weakened somewhat, only to strengthen once again as it returned to the warm ocean feature. Warm ocean features in the Gulf of Mexico contributed to the rapid intensification of hurricanes Katrina and Rita in 2005.

Lin said the research will contribute to improving our understanding of and ability to forecast catastrophic events like Nargis in the future, reducing loss of life and property. "Such a capability is particularly needed in developing countries, where less advanced cyclone monitoring and warning systems can leave people with little time to escape from disaster," she said.

The scientists compared the thermal structure of the upper ocean waters within the warm ocean feature during the storm with its thermal structure under normal climatological conditions. Study data came from the international Argo float program, NASA's Jason-1 satellite, the European Space Agency's Environmental Satellite, the U.S. Navy's GEOSAT Follow-On satellite and NOAA's Global Temperature and Salinity Profile Program data base. The satellite data were used to derive the upper ocean thermal structure for regions where no suitable direct measurements were available.

"This research demonstrates a significant potential benefit of using altimeter data for operational weather forecasting and tropical cyclone intensity predictions," said study co-author Tim Liu of JPL. "Current hurricane analyses include variations in ocean heat, which can be revealed by ocean altimeters. Satellites like NASA's Jason-1 and Ocean Surface Topography Mission/Jason-2 make important contributions to the operational monitoring and prediction of tropical cyclones, as have other NASA satellites."

Results of the study were published this month in Geophysical Research Letters.

Provided by NASA

Explore further: The internal ocean of Saturn's moon Enceladus could be old enough to have evolved life, finds study

Related Stories

Study bolsters theory of heat source under Antarctica

November 8, 2017

A new NASA study adds evidence that a geothermal heat source called a mantle plume lies deep below Antarctica's Marie Byrd Land, explaining some of the melting that creates lakes and rivers under the ice sheet. Although the ...

Deep waters spiral upward around Antarctica

September 27, 2017

Since Captain James Cook's discovery in the 1770s that water encompassed the Earth's southern latitudes, oceanographers have been studying the Southern Ocean, its physics, and how it interacts with global water circulation ...

Tracking down the whale-shark highway

August 30, 2017

Did you know that August 30 is International Whale Shark Day? Whale sharks are the largest fishes on Earth, growing up to 18 meters (60 feet) long, but they feed mostly on tiny drifting animals such as copepods and, occasionally, ...

Recommended for you

Researchers pin down one source of a potent greenhouse gas

November 20, 2017

A study of a Lake Erie wetland suggests that scientists have vastly underestimated the number of places methane-producing microbes can survive—and, as a result, today's global climate models may be misjudging the amount ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.